

4D-Var: Optimisation and performance on the NEC SX-6

ECMWF presentation - 27th October 2004 Dr Stephen Oxley

Introduction

- Porting Data Assimilation codes to the SX-6
- Optimisation techniques and impacts
- Effect of PE domain decomposition
- Code scalability
- Additional operational considerations

Porting Data Assimilation codes to the SX-6

Non Standard/Ambiguous use of Fortran:

- Illegal usage of structures (OPS)
- Unformatted internal writes (OPS/VAR)
- Expand out implied-do loop internal writes
- Functionality Changes
 - Replacement of NAG libraries: Now use Lapackblas (OPS/VAR)
 - Reduce size of MPI ID tags and terminate correctly
 - Allow more LS States than PEs (VAR)

C – Fortran Interface:

- Ensure correctly declared sizes between routines.
- Optimisation Level:
 - Change level until gives correct results with highest optimisation (Obvious)
 - For time critical routines, track down individual loops that prevent using higher optimisation levels and deal with them.

Optimisation Techniques and Impacts

Optimisation Techniques and Impacts

•On SX-6 most important to:

- Ensure loops vectorise well
- Reduce memory bank conflicts
- Reduce load imbalance
- Make efficient use of IO

Optimisation Techniques and Impacts

- Standard test job similar to what is operational:
 - 4D-Var N108L38 (216x163x38) 6 hour assimilation window with 20 minute time step => 18 Linearisation States.
 - Converges to a solution which minimises the difference between the LS States and observations in ~60 iterations.
 - In 4D-Var each of the 60 iterations performs a forward forecast and its adjoint (essentially a backward forecast)
 - These forecast routines account for practically all of the run-time and is why 4D-Var is an order of magnitude more demanding than 3D-Var

Overall Performance: 4D-Var Version 20.0 vs 20.5

Met Office

Most Popular Optimisation Techniques Applied (Number of routines in Top 10 applied to)

- 1. Remove unnecessary MPI summation orders (5)
- 2. Loop splitting to remove dependence of calculations (5)
- 3. Change loop nest order to aid vectorisation (4)
- 4. Collapse loops by hand to increase vector lengths (3)
- 5. Loop merging (3)
- 6. Use additional work arrays to avoid bank conflicts (2)

Effect of PE Domain Decomposition

Effect of PE Decomposition: 4D-Var on 6 Nodes

Code Scalability

Code Scalability: 4D-Var 6 Nodes vs 1 Node

1 node times are scaled to 6 node

Scaling of 4D-Var N108L38

Additional Operational Considerations

Elapsed time (seconds)

Questions & Answers

Top 10 VAR 20.0 at 2x21

- 1. Cubic_lagrange_adj
- 2. Gcr_elliptic_operator_adj2
- 3. Swap_bounds_adj
- 4. Gcr_coefficient
- 5. Swap_bounds
- 6. Gcr_elliptic_operator
- 7. Mpp_tri_solve_exec
- 8. Gcr_precon_adi_exec_tri_solve
- 9. Vert_weights
- 10.Gcr_precon_adi_exec_tri_adj2

Optimisation Techniques and Impacts

	Routine Name/Opt Technique Num	1	2	3	4	5	6
1	Cubic_lagrane_adj		Х	Х	Х	Х	Х
2	Gcr_elliptic_operator_adj2	X	Х			Х	
3	Swap_bounds_adj			Х			
4	Gcr_coefficient	X					
5	Swap_bounds						
6	Gcr_elliptic_operator	X	Х			Х	
7	Mpp_tri_solve_exec		Х	X	Х		X
8	Gcr_precon_adi_exec_tri_solve	X	X				
9	Vert_weights				Х		
10	Gcr_precon_adi_exec_tr_adj2	X		Х			

Top 10 VAR 20.5 at 2x21

Met Office

- 1. Swap_bounds_adj
- 2. Gcr_elliptic_operator_adj2
- 3. Swap_bounds
- 4. Cubic_lagrange_adj
- 5. Gcr_coefficient
- 6. Vert_weights
- 7. Ritchie
- 8. Interpolation
- 9. Mpp_tri_solve_exec
- 10. Gcr_elliptic_operator