NWP in the U. S. Navy

Richard M. Hodur¹, Michael Clancy², John Cook¹, James D. Doyle¹, James S. Goerss¹, Timothy F. Hogan¹, Thomas E. Rosmond¹, Mark Swensen²,

Douglas L. Westphal¹ ¹Naval Research Laboratory Monterey, CA 93943-5502 ²Fleet Numerical Meteorology and Oceanography Center Monterey, CA 93943-5502

Eleventh Conference on Teracomputing in Meteorology ECMWF 25-29 October 2004

Outline

- •History of NWP in the Navy
- Current Status
- •Future Plans
- Concluding Remarks

NWP in the U.S. Navy

History of Modeling: Global

Year	Computer	GFLOPS	Model	Data Assimilation
1974	СDС 6500 (2-р)	0.003		
1975				
1976	CDC Cyber 175	0.01		
1977			NHPE: 381 km/L5	Fields-By-Information Blending
1978				, , , , , , , , , , , , , , , , , , ,
1979				
1980	CDC Cyber 203	0.2		
1981 1982	CDC Cyber 205	0.4	NOGAPS Grid Point: 4°x5°L6	
1982	2nd pipe added	0.4	4°x3°L6	
1983			2.4°x3°L6	
1985			2.4 X3 20	Variational Balancing
1986				
1987	2 pipes added	0.8	2.4°x3°L6	
1988			NOGAPS Spectral: T47L18	Multivariate Optimum Interpolation
1989			T79L18	
1990				TC Initialization
1991	Cray c90 (8-p)	8		
1992				
1993				
1994			T159L18	
1995				
1996	2nd 16-p c90 added	24		HiRes Feature Track Winds
1997 1998			T159L24	
1998			1139624	
2000			Emanuel Cumulus	
2000	SGI 03000 (512-p)	1000		
2002	(p)		T239L30, MPI	
2003	SGI: 512/128/256/256-p	2600	NAAPS (Aerosols)	NAVDAS
2004	IBM: 288-p added	4400		Direct Assimilation of AMSU-A

NAVDAS

NRL Atmospheric Variational Data Assimilation System Focus: Optimal fit of observational and model data

NAVDAS minimizes the cost function J_o where x_a is the analysis, x_b is the background, H is the forward model, y is the observations, R is the observational error covariance, and P_b is the background error covariance

 $J_{a} = (y - H(x_{a}))^{T} R^{-1} (y - H(x_{a})) + (x_{a} - x_{b})^{T} P_{b}^{-1} (x_{a} - x_{b})$

Observations

• Analysis variables: Temperature, Height, u- and v-wind components, Wind speed, Moisture, and Radiances, from the surface to 0.1 mb (~65 km)

Satellite data:

Background

- **Operational:** AMSU-A, SSMI TPW, MODIS winds, Cloud and Water Vapor winds
- Beta-Testing: AMSU-B, HIRS, SSMI winds, QuikSCAT, WindSat

100 mb

Pressure Surface

1000 mb

Applicable

to Pressure

or Isentropic Surfaces

100 mk

Isentropic Surface TT

• Features:

- Cast in observation space
- Most efficient for sparse observations/dense grids
- Runs on mainframes or workstations (uses MPI and FORTRAN)
- Applicable to any model or grid (global or mesoscale)
- Operational at FNMOC: Oct 2003

Observation Impact using the NAVDAS Adjoint

Rolf Langland and Nancy Baker

Observation Impact using the NAVDAS Adjoint

NOGAPS

Navy Operational Global Atmospheric Prediction System 0-6 day global forecasts

•Complex Data Quality Control

•Analysis:

- NRL Atmospheric Variational Data Assimilation System (NAVDAS)
- 2-d OI Analysis of SST (NRL Coastal Data Assimilation System, NCODA)

•Nonlinear, Normal Mode Initialization

•Hydrostatic, Spectral Atmospheric Model:

- Cumulus Parameterization (Emanuel, MWR 1999)
- PBL Parameterization (Louis, BLM 1979)
- Radiation Parameterization (Harshvardhan et. al., JGR 1987)
- Convective and Stratiform Cloud Parameterization (Teixeira and Hogan, JC 2002)
- Gravity Wave Drag (Webster et. al., QJRMS 2003)

•Features:

- Over 17,000 Operational Forecasts run at FNMOC since 1982
- 6 Hour Incremental Data Assimilation Cycle
- Current Operational Resolution: T239 (~55 km), 30 Vertical Levels
- Approximately 7.5 minutes/forecast day wall time using 120 O3K processors
- Track Forecasts for all Tropical Cyclones w/max wind > 50 knots
- Supplies Boundary Conditions to Mesoscale and Wave Models

Growth of perturbations and errors in the SV-subspace over 3-days

Leading Singular Vector (SV): Fastest growing (linear) perturbation to a trajectory

Targeting Field Programs

NORPEX 1998

Targeting Methods: NRL: e-norm singular vectors and adjoint-derived sensitivity gradients NCEP: ETKF

Targeting Field Programs

NORPEX 1998 Targeting Result

Dropsondes provided an average 8% reduction in 2-day 500 hPa height error over western North America

Targeted observations improve forecasts on average, but not in every case

Satellite winds were tested as proxy targeted observations - Impact was similar to that from dropsonde observations

NWP in the U. S. Navy History of Modeling: Mesoscale

Year	Computer	GFLOPS	Model	Data Assimilation
1974	CDC 6500 (2-p)	0.003		
1975	000 000 000 000		TC Channel Model: 205kmL3	
1976 1977	CDC Cyber 175	0.01		
1977				
1979				
1980	CDC Cyber 203	0.2	OTCM: 205kmL3	Cold Starts
1981	CDC Cyber 205			
1982	2nd pipe added	0.4	NORAPS: 120kmL10	1
1983				
1984				
1985				
1986 1987	2 nines added	0.8	80kmL21	Successive Corrections
1987	2 pipes added	0.8	80KIIIL21	Multivariate Optimum Interpolation
1989				
1990				TC Initialization
1991	Cray c90 (8-p)	8	40kmL30	
1992				
1993				
1994				
1995			Nested Grids: 45/15kmL30	LiDes Esstere Tresle Minds
1996 1997	2nd 16-p c90 added	24	COAMPS run on USS Nimitz	HiRes Feature Track Winds
1997			COAMPS run of oss militz	
1999			81/27/9/3kmL30	
2000				
2001	SGI 03000 (512-p)	1000	MPI	
2002			54/18/6kmL30	
2003	SGI: 512/128/256/256-p	2600	Moving Nested Grids	
2004	IBM: 288-p added	4400	Aerosols	NAVDAS

COAMPSTM

Coupled Ocean/Atmosphere Mesoscale Prediction System 0-3 day high-resolution forecasts

Complex Data Quality Control

• Analysis:

• Atmosphere: MVOI analyses of u, v, and Heights; Univariate analyses of T, q • Ocean: 2D OI of SST; 3D MVOI of T, S, SSH, Sea Ice, and Currents (NCODA)

Initialization:

Atmosphere: Hydrostatic Constraint on Analysis Increments, and/or Digital Filter
Ocean: Stability check

• Model:

• Atmosphere:

• Numerics: Nonhydrostatic, Scheme C, Nested Grids, Sigma-z, Flexible Lateral BCs

- Parameterizations: PBL, Convection, Explicit Moist Physics, Radiation, Surface Layer
- Aerosols: Surface databases, High-order Transport, Dry Deposition, Wet Removal
- Ocean: NRL Coastal Ocean Model (NCOM)
 - Numerics: Hydrostatic, Scheme C, Nested Grids, Hybrid Sigma/z
 - Parameterizations: Mellor-Yamada 2.5

• Features:

- Globally Relocatable (5 Map Projections)
- User-Defined Grid Resolutions, Dimensions, and Number of Nested/Parent Grids
- Incremental Data Assimilation; Atmosphere: 6 or 12 hours; Ocean: 12 or 24 hours
- Applicable for Idealized or Real-Time Applications
- Single Configuration Managed System for All Applications
- **Operations** (Atmospheric Components plus 2D SST Analysis):
 - FNMOC: 8 Areas, 4 runs/day, grid spacing as low as 6 km, forecasts to 72 hours, 30 levels
 - Navy Regional Centers: 2 runs/day, grid spacing as low as 3 km, forecasts to 48 hours

COAMPS™ is a trademark of the Naval Research Laboratory

NCODA SST Analyses for Triply-Nested Eastern Pacific Area

Valid Time: 0000 UTC 1 July 1999 NCODA: NRL Coastal Ocean Data Assimilation System

Lowest near-surface wind and SST RMS and Bias Errors using Two-way Coupling

COAMPS[™] Dust Forecasting for Operation Iraqi Freedom

NWP in the U. S. Navy Future

Global Modeling

Year	Computer	GFLOPS	Model	Data Assimilation
2003	SGI: 512/128/256/256-p	2600	NOGAPS	NAVDAS
2004	IBM: 288-p added	4400		Direct Assimilation of AMSU-A
2005			Increased number of vertical levels	Predictability/Targeted Observations
2006		13200	NAAPS; Semi-Lagrangian NOGAPS	Assimilation of additional sensors
2007			Upgrade to Ensembles	
2008			Upgraded Physics	
2009			15km/60	
2010		30000	Advanced Numerical Techniques	NAVDAS-AR

Mesoscale Modeling

	Year	Computer	GFLOPS	Model	Data Assimilation
2	2003	SGI: 512/128/256/256-p	2600	COAMPS	Multivariate Optimum Interpolation
2.5	2004	IBM: 288-p added	4400	Aerosols	NAVDAS
	2005			Urban Effects	Assimilation of additional sensors
	2006		13200	Air-Ocean Coupling/ESMF/WRF	
	2007			Ensembles	Cloud Assimilation
	2008			9/3/1 km/80L	
	2009				
h	2010		30000	New Dynamic Core	NAVDAS-AR
	37 L	A SA A	0	A LA SAN A LA	an a k an a

NAVDAS-AR

NAVDAS-Accelerated Representer

- Natural 4-dimensional extension of NAVDAS (Xu and Daley, 2002) built on observation-space algorithm (representer method)
- Minimizes a generalized cost function that measures the errors in the background initial condition, in the prediction model, in the observation measurements, and in the observation operators
- Equivalent to solving a coupled nonlinear Euler-Lagrange system (Xu and Rosmond, 2004)
 - Nonlinearity is dealt with through an iterative algorithm the outer loop strategy
 - Linearized Euler-Lagrange system is decoupled using representer method
 - Resolutions of the outer and inner loops are currently T239L30 and T79L30, respectively
- Computational cost of 2 outer loops in NAVDAS-AR is currently about 10 times of that of NAVDAS
- Perfect model assumption is currently used as a special case of model error representation (no model error covariance included in cost function)

NAVDAS-AR Assimilation

Outer Loop: T239L30, Inner Loop: T79L30 400,000 operational observations

NAVDAS-AR 250MB Temperature Corrections at 09 Z 26 December 2002

 Operational observations are all assimilated at the times of observations in NAVDAS-AR

• NAVDAS-AR uses the prediction system to constrain the analysis

Next-Generation NOGAPS

Testing skill and efficiency of Spectral Semi-Lagrangian and Icosahedral grid formulations against the current Spectral Eulerian formulation

Lat/Lon Grid

Icosahedral Grid

•Current Model:

Spectral/Eulerian

- Operational (T239L30, ~55km)
- Lat/Lon grid for physics
- Problems with positive definite quantities
- Requires small time steps

•Short-Term:

Spectral/Semi-Lagrangian/Semi-Implicit

- Improved efficiency: Much larger time steps
- Positive definite advection
- Lat/Lon grid for physics
- Thinned grid near the poles: Increased efficiency
- New formulation of hydrostatic equation: Higher model top

•Long-Term:

- Icosahedral Grid
- Improved efficiency
- Positive definite advection
- Can use spectral elements or Semi-Lagrangian advection
- Potential for unified global/mesoscale model

Future of COAMPS

•Mesoscale Modeling 2005-2007:

- Coupled to ocean model (NCOM) using ESMF
- Movable-nest for battle-group and tropical cyclone applications
- Mesoscale ensembles
- Integrated into WRF framework (Interchangeable physics suites)
- COAMPS adjoint

•Mesoscale Modeling 2008+:

- New formulation will require ~50X increase in computations:
 - Horizontal resolution: 27/9/3 km to 27/9/3/1 km (moving grids, explicit convection)
 - Vertical resolution: ≥ 60 levels
 - Analysis of non-conventional observations, (e.g., radar, clouds, refractivity)
 - Multi-component aerosol modeling, interactive w/radiation and microphysics
 - Urban applications
 - Exploration of hybrid coordinates for representing vertical surfaces
- Coupled mesoscale ensemble prediction
- •NAVDAS-AR

NWP in the U. S. Navy

Concluding Remarks

Navy has made significant upgrades to NWP capabilities

• **Processing Power:**

- •1974: 0.003 GFLOPS
- •2004: 4,400 GFLOPS
- •2010: 30,000 GFLOPS

Data Assimilation:

- •1974: Fields-by-Information Blending
- •2004: NAVDAS
- •2010: NAVDAS-AR

• Global Modeling:

- •1974: Northern Hemisphere PE model (381km/L6)
- •2004: NOGAPS (T239/L30), NAAPS (Aerosols)
- •2010: ~12km, Semi-Lagrangian, Improved Ensembles, Aerosols

Mesoscale Modeling:

- •1974: Cold Starts
- •2004: Nonhydrostatic, Moving Multi-Nests, 6 kmL30, Aerosols
- •2010: ~1 km, 2-way coupling, Urban Applications

NWP in the U. S. Navy

Richard M. Hodur¹, Michael Clancy², John Cook¹, James D. Doyle¹, James S. Goerss¹, Timothy F. Hogan¹, Thomas E. Rosmond¹, Mark Swensen²,

Douglas L. Westphal¹ ¹Naval Research Laboratory Monterey, CA 93943-5502 ²Fleet Numerical Meteorology and Oceanography Center Monterey, CA 93943-5502

Eleventh Conference on Teracomputing in Meteorology ECMWF 25-29 October 2004

Outline

- Background: Data Assimilation and Modeling Systems
 History of Modeling in the Navy
- Current Status
- •Future Plans
- Concluding Remarks