

Unified Model Performance on the NEC SX-6

Paul Selwood

Introduction

The Met Office

- National Weather Service
 - Global and Local Area
- Climate Prediction (Hadley Centre)
- Operational and Research activities
- Relocated to Exeter from Bracknell 2003/4
- 150th Anniversary in 2004

Met Office

Supercomputers

- 1991-1996 : Cray Y-MP/C90
- 1996-2004 : Cray T3E
- 2003 : NEC SX-6
 - Operational May 2004
 - Currently 2 x 15 node SX-6 systems
 - May 2005 additional 15 node SX-8

- Single code used for NWP forecast and climate prediction
 - N216L38 Global (40km in 2005)
 - 20km European (12 km in 2005)
 - 12km UK model (4km in 2005)
- Submodels (atmosphere, ocean ...)
- Grid-point model (regular lat-long)
 - non-hydrostatic, semi-implicit, Semi-Lagrangian dynamics
 - Arakawa C-grid, Charney-Philips vertical staggering

- Route to disk depends on packet size
 - < 64KB nfs (slow)</pre>
 - •> 64KB GFS (fast)
- System buffering only available for Fortran I/O – Unified Model uses C.

IO – rates and improvements

 Solution User buffering of output data. 	STASH version	Time (s)	Rate (MB/s)
 Removal of unnecessary opens and closes. Subsequent buffering of headers increase I/O rate to > 140 MB/s. Considering use of locally attached disk in future (> 1GB/s seen). 	Original	212	40
	Buffered	114	80
	Removed Open/Close	69	110

Semi-Lagrangian Advection

Routine	Max (s)	Min (s)
Theta departure points	29.67	18.46
Wind departure points	57.55	35.84

N216L38, 2 day forecast

Interpolation of Departure points

- Need to calculate departure points for variables held at θ, u and v points.
- Currently call the departure point routine 3 times, once for each variable type.
- The departure point routine is expensive and poorly load balanced as extra calculations are done for latitudes >80°.
- Can improve runtime and load balance by calculating the departure point for a θ point and then interpolating to the u and v points.
- Approximation only works for higher resolutions.

Interpolation of Departure Points

- Much simpler algorithm is generally cheaper
- Perfect load balance for wind calculations
- Load balance remains a (hard) problem for theta point calculations

Routine	Max (s)	Min (s)
Wind departure points (original)	57.55	35.84
Wind departure points (new)	14.25	14.23
© Crown copyright 2004		P

Convection

Convection load balance is an old problem which we had a solution for on the T3E.

- Needed reworking as coded directly in SHMEM
- Segment based dynamic load balancing
 - Having enough segments to give good balance would harm vector performance
 - Data in segments could be sparse data moved that wasn't used
- Moved too much data approach wouldn't be appropriate with SX-6 compute/communicate ratio.

Convection – Deep and Shallow

- Load balance separately for deep/shallow
- Calculations per point assumed to be equal
- Tuneable threshold for data sizes to move
- Compress data to active points
- Communications use one-sided MPI

Shallow and Deep Convection Load Balance

2 2

Ŷ

Met Office

Short Wave Radiation

Short Wave Radiation – incoming flux (January)

Load Balancing – Short Wave Radiation

- Similar approach to convection
- Short Wave flux calculations take 90% of time so only this is balanced
- Computation is relatively more expensive than for convection

Communications

- One sided MPI communications have advantages on the SX-6
 - •No need to explicitly schedule communications (MPI_Get from the under-loaded CPU)
 - •Speed! Example is processor pairs exchanging 1000 words

Method	Time on 2 Nodes (16 CPU)
MPI_Get (global memory)	32.3 msec
Buffered Send/Recv	6.2 msec
Individual Send/Recv	21.7 msec
Buffered MPI_Get (global memory)	5.8 msec

Communications – ideas and opportunities

- Many unnecessary barriers in code
 - T3E relics!
 - Easily removed for immediate benefit.
- Gathering/Scattering 3D fields level-by-level
 - Optimised by copying into temporary buffers and doing one communication per CPU pair
 - Halves cost of these communications
- >6000 halo exchanges in 6 hour forecast
 - Can we amalgamate any?
 - Can we remove any?

Questions?