

QsNet II and beyond

Moray McLaren

October 2004

Networks for Supercomputers

October 2004

Image Courtesy of LANL Quadrics Ltd.

QsNet characteristics

- Ultra low user process to user process latency
- Maximum available bandwidth on standard buses
- Seamless scaling to many 1000s of nodes
- High availability
- Reliable data transfer
- Mixed system and multiple user traffic on one network

QsNet unique features

- Operates on pageable virtual memory
 - No page lock down requirement
- Reliable hardware broadcast
 - Optimised global operations such a barrier synchronisation
- User programmable IO processor
 - Easy to implement multiple protocols
 - Minimize main processor interrupts

QsNet ^{II} Components

 Elan 4 network interface card

Elite 4 switch component

QsNet II Switch

Fat Tree Topology

- Benefits
 - Linear bandwidth scaling
 - Fault tolerance structure
 - Uniform connectivity
 - Supports global operations
 - Simple adaptive routing

QsNet II Update

- Standalone Switches
- Fibre networks
- 2048-way switch
- Software developments

QsNet^{II} Product Development

 Introduction of low cost standalone 8/32/128-way switches

QsNet^{II} Development - Fibre Network

32 16-way top switches in 4 chassis

Roadmap for Fibre Parts

Dec 2003	Components in house
Sept 2004	Mechanical design of new faceplates
Nov 2004	Proto build of new cards for UL & EMC testing
Mar 2005	Approvals complete
Apr 2005	Production build

QsNet^{II} Development – 2K Port Network

QsNet^{II} Performance Update

- MPI bandwidth & Latencies
- Event processor gather on a tree
- Alltoall optimisation
- Thread Processor Reduction
 - Ref Fabrizio Petrini & Adam Moody
- Pallas b_eff

QsNet^{II} Performance – MPI Bandwidth

QsNet^{II} Performance – MPI Latency

QsNet^{II} Performance – DSUM Reduction

QsNet^{II} Performance – Event Gather

October 2004

QsNet^{II} Performance – All to All

October 2004

QsNet^{II} Performance – b_eff

QsNet^{II} Software Development

- Lustre support for multiple rails
 - Bandwidth
 - Transparent rail failover
- "patch free kernel"
 - Uses pin down cache
 - Single source tree

Next generation - QsNet III

Performance

- Need to offer the highest performance in our chosen application space
- REAL application performance not just spec sheet.
- Standards
 - We need to be able to offer standards based solutions
- Re-use
 - Design for re-use of silicon IP, easily develop chip variants

Costs reduction - the real challenge

- Driven by continuing reduction in node costs
- NIC costs
 - Volume is everything. Supercomputing market not enough on it's own.
- Fabric costs
 - 40% ASIC, 30% cables 30% other stuff..

Elan 5 program

Design objectives

- Utilise new CPU interfaces PCI Express
- Provide range of bandwidth options
- Maintain position as lowest latency interconnect
- Generalise processor to support alternate protocols
- Improve support for mixed system and user traffic

