

Platform[•] Outline

Introduction

Real-World Examples

- Topology Awareness
- Task Geometry

Summary

NEWTON'S EQUATIONS • SCHROEDINGER EQUATION (TIME DEPENDENT) • NAVIER-STOKES EQUATION •
 POISSON EQUATION • HEAT EQUATION • HELMHOLTZ EQUATION • DISCRETE FOURIER TRANSFORM •
 MAXWELL'S EQUATIONS • PARTITION FUNCTION • POPULATION DYNAMICS •
 COMBINED 1ST AND 2ND LAWS OF THERMODYNAMICS • RADIOSITY • RATIONAL B-SPLINE •

Platform^{*}

Platform Infrastructural Software

i.e., \exists an ecosystem of resource management

Platform Topology-Aware, Bound-Processor Scheduling on Linux/NUMA

bsub <bsub options> -n <number of processors> -R -ext "SGI CPUSET[cpuset options]" pam -mpi -auto place a.out

CPUSET TYPE=static; CPUSET NAME=<static cpuset name>

or

CPUSET TYPE=dynamic; [MAX RADIUS=<radius>;] [RESUME OPTION=ORIG CPUS]; [CPU LIST=<cpu ID list>;] [CPUSET OPTIONS=<SGI cpuset option>;] [MAX CPU PER NODE=max num cpus]

or

CPUSET TYPE=none

RSL = Resource Specification Language

Platform Topology-Aware Scheduling on Linux/RMS

```
bsub -n # -ext "alloc_type[; nodes=# / \ ptile=cpus_per_node /
base=base_node_name] \
```

```
[; rails=# | railmask=bitmask]"
```

```
where alloc_type is:
```

- **RMS_SNODE** sorted node order as returned by RMS, gaps are allowed in the allocation
- **RMS_MCONT** contiguous allocation from 'left to right' taking into consideration RMS ordering, no gaps are allowed in the allocation
- **RMS_SLOAD** sorted node order as returned by LSF, gaps are allowed in the allocation

Platform Task Geometry (TG)

Addresses the locality of related tasks

Job submission requires some effort ... but the rest is transparent to the end user

Step 1

Set LSB_PJL_TASK_GEOMETRY environment variables

Step 2

Use bsub -n and -R "span[ptile=]" to make sure LSF selects appropriate hosts to run the job

Platform Task Geometry: Step 1

Set LSB_PJL_TASK_GEOMETRY environment variables

- e.g., LSB_PJL_TASK_GEOMETRY="{(2,5,7)(0,6)(1,3)(4)}"
- This job spawns 8 tasks and span 4 nodes
 Tasks 2,5, and 7 will run on the same node the first node
 Tasks 0 and 6 will run on the same node the second node
 Tasks 1 and 3 will run on the same node the third node
 Task 4 will run on one node alone the fourth node

Platform Task Geometry: Step 2

Use bsub -n and -R "span[ptile=]" to make sure LSF selects appropriate hosts to run the job

- This functionality guarantees the geometry but not the host order
- Job submission directives must ensure each host selected by LSF can run any group of tasks specified in LSB_PJL_TASK_GEOMETRY
- Over-book CPUs to achieve this
- bsub -n x -R "span[ptile=y]" –a mpich_gm myjob

x = y * (the # of nodes)

- y = the maxinum # of tasks in one group in LSB_PJL_TASK_GEOMETRY
- e.g., bsub -n 12 -R "span[ptile=3]" –a mpich_gm myjob

Platform TG Example: Community Climate System Model (CCSM)

Multiple Process, Multiple Data

i.e., MPMD application:

OpenMP + MPI

framework that divides the complete climate system into component models connected by a coupler. Individual components -- ocean, atmosphere, land, and sea-ice -- can be exchanged for alternate models, thus allowing different configurations appropriate for different applications.

http://www.ccsm.ucar.edu/models/ccsm3.0

Platform Summary

Infrastructural software enables production HPC

Infrastructure needs to be factored into HPC productivity assessments

Use 'economic measures'

'Skill' in assimilation and reanalysis efforts

- Evaluate time-to-production
- Increase parallel computing ROI

Abstract complexity via RSL, programming language or some combination ...

- Comply with standards/certifications
 - Linux Standards Base
 - Common Criteria Certification
 - The Open Grid Services Architecture

http://www.darpa.mil/ipto/programs/hpcs

http://www.scimag.com October 2004 issue dedicated to HPC

