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Overview
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PDAF in the context of Kalman filters

Parallel performance of PDAF



Data Assimilation
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Filter ⇔ Smoother

Possible applications:

weather/climate forecasts
sensitivity studies

Estimate system state (atmosphere, ocean, …) on the 
basis of a numerical model and measurements by 

combining both sources of information.



14-day forecast of ocean surface temperature

Data Assimilation
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Ensemble-based Kalman filters
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Initialization: Sample initial state and its error 
estimate by an ensemble of model states.

Forecast: Evolve each ensemble member with the 
non-linear (stochastic) model.

Analysis: Apply update step of the Kalman filter to 
ensemble mean or all ensemble states. Error 

estimate given by ensemble statistics.

Re-Initialization: Transform state ensemble to exactly 
represent updated error statistics. 



Computational and Practical Issues
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• Huge amount of memory required
(model fields and ensemble matrix) 

• Huge requirement of computing time
(ensemble integrations)

• Natural parallelism of ensemble integration exists 
- but needs to be implemented

• Existing models often not prepared for data 
assimilation



PDAF: Considerations for Implementation 
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Model
initialization

time integration
post processing

Filter
Initialization

analysis
re-initialization

Observations
obs. vector

obs. operator
obs. error

Further considerations
• Combination of filter with model with minimal changes     

to model code
• Control of assimilation program coming from model
• Simple switching between different filters and data sets
• Complete parallelism in model, filter, and framework

Logical separation of problem

state vector

time

state vector

obs. vector
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Filter_MPI_Init
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• User-supplied routines for

� field transformations between model and filter

� observation-related operations

� filter post-step

• Defined calling interface for

� calls of framework routines

� calls to user-supplied routines

• Interface independent of filter (almost)

PDAF interface structure



2-level Parallelism
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Model 1

Model 2

Filter

Forecast Filter-Update Forecast

Model 1

Model 2

parallelization variants
distribute operations

different processes for 
model and filter update 

Filter update with 
model processes



domain decomposition

parallel filter update
distribute ensemble matrix

mode decomposition
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Mode decomposition
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Domain decomposition

L. Nerger et al., PDAF - The Parallel Data Assimilation Framework



L. Nerger et al., PDAF - The Parallel Data Assimilation Framework

• Distribute model integrations

• Distribute filter update step

• 3 communicators

� Comm_Model: model tasks

� Comm_Filter: filter processes

� Comm_Couple: communication between 
model and filter

MPI parallelization
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• Ensemble Kalman filter (EnKF, Evensen, 1994)

� widely used 

� fully nonlinear error forecast

• SEEK filter (Pham et al., 1997)

� explicit low-rank (error-subspace) formulation

� linearized error forecast

• SEIK filter (Pham et al., 1997)

� combination of strengths of EnKF and SEEK

Current KF algorithms in PDAF



3D box experiment

� finite element model FEOM

� 31x31 grid points, 11 layers 

� nonlinear problem: interacting 
baroclinic Rossby waves

� Assimilate sea surface height 
each 2.5 days over 40 days

(FEOM: Danilov et al., Ocean 
Modeling, 2004)
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Speedup of PDAF
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Parallel Efficiency of Filter Update

Mode decomposition

Domain decomposition

(ens. size = 10)
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Further Example: FEOM North Atlantic

surface nodes: 16000 
3D nodes: 220000
z-levels: 23
eddy-permitting



Summary

• Parallel Data Assimilation Framework PDAF

� Simplified implementation of assimilation systems

� Flexibility: Different assimilation algorithms and
data configurations within one executable

� Full utilization of parallelism

� High parallel efficiency
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Future directions

� Extensions of PDAF 

• more advanced filters (localization, adaptivity)

• smoother algorithms

� Data assimilation applications (oceanography)

• FEOM
- stability of North Atlantic circulation

• OPA-Model (with C. Böning, IFM-Geomar, Kiel)
- large-scale circulation interannual to decadal
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Application: FEOM North Atlantic
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� 3D primitive equation model

� finite-element discretization

Filter Experiments:

� Assimilate synthetic observations of sea surface height ζ

� Covariance matrix estimated from 9-year model trajectory 
starting from January 1991 initialized from climatology

� Initial state estimate from perpetual 1990 model spin-up

� analysis steps: initial time & after 1 month of model integration

� No model error; forgetting factor 0.8 for both filters



Modeled Sea Surface Height



Estimated Sea Surface Height



Estimated Temperature at -70m



Comparsion of Computation Times

• Ensemble size 32; 8 concurrent model integrations

Model integrations: 34000s

Filter update:

Difference due to

� inversion of huge matrix in EnKF

� generation of ensemble of observations

10sSEIK

4600sEnKF

TimeFilter


