The Infrared Atmospheric Sounding Interferometer (IASI) and its implications on HPC?

Lars Fiedler EUMETSAT Am Kavalleriesand 31 64295 Darmstadt Germany

The Infrared Atmospheric Sounding Interferometer (IASI)

EUMETSAT will provide the IASI high resolution sounder data operationally from 2006 onwards with a duration of 14 years: Will the large information content of the IASI spectra have an implication on HPC ?

Starting the discussion with introducing:

- Mission objectives
- The METOP satellite
- The IASI instrument
- The processing chains (L0, L1 and L2)
- Product format and content

The IASI Mission objectives

IASI measures the spectrum of IR radiation emitted by the Earth system from a low altitude sun-synchronous orbit. The primary objective is to provide information on:

- Atmospheric temperature profiles in the troposphere and lower stratosphere
- Profiles of water vapour in the troposphere
- Total amount of ozone and information about its vertical distribution
- Fractional cloud cover and cloud top temperature/pressure

ΜΕΤΟΡ

IASI instrument

- Fourier transform spectrometer with OPD of 2 cm
- Covering the infrared between 645 and 2760 cm⁻¹(3.62-15.5µm) with 3 different bands/detectors
- Spectral resolution 0.5 cm⁻¹ (FWMH)
- sampling at 0.25 cm⁻¹
- 8461 channels
- Integrated Imaging Subsystem with 3.3333° by 3.3333° field of view raster by 64 x 64 pixels

Radiometric accuracy

- IASI radiometric noise NEDT@280K
 0.28 K at 650 cm-1
 0.47 K at 2400 cm-1
- Dynamic range 180 K to 350 K
- Radiometric calibration better than:
 - 0.5 K absolute
 - 0.2 K relative
 - in each channel.
- Imager radiometric noise @280K 0.57 K
- Dynamic range 200 to 300 K

Instrument radiometric noise specification

Radiometric accuracy of PFM

Instrument radiometric performance in NeDT (IPR-2) measured during optical vaccuum test

IASI field of view

Collocation of IASI, ATOVS and AVHRR

Temperature sounding

Fig. 3: Correlation between the CO, absoption spectrum and the atmospheric temperature profile

Summary of processing levels

L0 (on-board) Processing

25/10/2004

IASI L1 processing constraints

<u>NRT</u>

- processing of L1C products in near-real time
- dissemination of L1C via EUMETcast and NRT-terminals
- processing and dissemination within 2h 15min

<u>Format</u>

- format for L1C dissemination is native EPS format (NRT-T)
- for EUMETCast the usage of BUFR (WMO) format is foreseen
- benefit is compression of about 50%

IASI L1 processing

IASI L1 processing

IASI L1C product content

- Calibrated apodized radiance spectra
- Geolocation and time stamp
- Calibrated IIS images
- AVHRR radiance analysis
- Product Quality information
- Processing information

L2 product content

Atmospheric Temperature	90 Levels
Atmospheric Water Vapour	90 Levels
Atmospheric Ozone	10 Layers
Integrated Ozone	1
Surface Temperature	2
Integrated N2O	1
Integrated CO	1
Integrated CH4	1
Integrated CO2	1
Surface Emissivity	20
Fractional Cloud Cover	3
Cloud Top Temperature	3
Cloud Top Pressure	3
Cloud Phase	Liquid, ice, mixed
Cloud Top Pressure	3

11th HPC workshop

EUMETSAT ·

IASI L2 prototype processing

- IASI L2 prototype runs on IBM p655, 8 CPUs with 1.5 GHz, 16 GB memory
- IASI L2 prototype is currently not running in near real time
- NRT L2 prototype processing costs are in the order of GFLOPS
- physical retrieval is the expensive part
- and especially the forward model and jacobians calculations

Processing summary

IASI implications on HPC?

