Intel's High-Performance Computing Technologies

11th ECMWF Workshop Use of High Performance Computing in Meteorology Reading, UK 26-Oct-2004

> Dr. Herbert Cornelius Advanced Computing Center Intel EMEA

inta

C continues to change TTTTTT TTTTT 10 012 0 ***************************** 1000 6000000000 00000000000 666666666 00000000000000 66888 and the second residence in the A 10 18 18 18 19 10000 100005 00466 60110-04 1.7.1.1 1000 00000 CONTRACTOR OFFICIAL ٥ 12 De Counter de ٠ 6 0

Some HPC History

1960s

1980s

1990s

2000s

HPC Systems	1970s	1980s	1990s	2000s
Processor	proprietary	proprietary	COTS	COTS
Memory	proprietary	proprietary	COTS	COTS
Motherboard	proprietary	proprietary	proprietary	COTS
Interconnect	proprietary	proprietary	proprietary	COTS
OS, SW Tools	proprietary	proprietary	proprietary	mixed

COTS: Commercial off the Shelf (industry standard)

High-Performance Computing with IA

Source: http://www.top500.org/lists/2004/06/2/

4096 (1024x4) Intel® Itanium® 2 processor based system 22.9 TFLOPS peak performance

PNNL 1936 Intel® Itanium® 2 processor cluster 11.6 / 8.6 TFLOPS Rpeak/Rmax

- ٠
- •
- •

2500 (1250x2) Intel® Xeon™ processor based system 15.3 TFLOPS peak performance

RIKEN 2048 Intel® Xeon™ processor cluster 12.5 / 8.7 TFLOPS Rpeak/Rmax

Source: http://www.top500.org/lists/2004/06/5/

- •
- •

Intel in Top500* List (6/2004)

TOP500 Processor Architectures

Source: www.top500.org

The next Step ...

Image Credit: NASA and Thomas N. Trower

60 TFLOPS peak performance 10240 Intel® Itanium® 2 processors 20x 512-processor SGI Altix nodes 400 terabytes of RAID storage capacity 2.5 petabytes tape silo farm capacity

http://www.nas.nasa.gov/About/Media/Releases/07_27_04_innovative.html

• 7 •

Beyond Enterprise Processors

SOFTWARE VENDOR ALLIANCES

•9•

HPC Focused Activities at Intel

Continuing HPC Product Focus

- New Intel® Itanium® Processor 1.6 GHz with 3MB cache
- New Intel® Xeon[™] processor platforms 3.6GHz
 - EM64T, PCI Express*, DDR-2 memory

HPC Focused SW Group – Parallel & Distributed Solutions Division

- ISV Software porting efforts for HPC
- Expansion of Parallel Application Centers
- Improved Ease of Use with Cluster Toolkit

Intel Advanced Computing Center

- Focused on advancing HPC with COTS
- Projects to improve
 - Performance
 - Scalability
 - Ease of use
 - System Management

Intel's "Advanced Computing Center"

Enterprise

► HPC

- Leading edge technology
- Niche market segment

Enterprise

- Risk adverse philosophy
- Large market segment

► IACC

 Accelerate innovation in mainstream (volume) computer technologies by working with the High Performance Computing community, government agencies and industry

> Target intersection of HPC & Enterprise

HPC

Driving Performance Vectors

Intel Research & Development

Pioneering Innovation Through Technology Leadership

- Silicon Process
- Density
- Frequency
- Manufacturing

- Micro-Architecture
- Execution Units, Caches
- Threading
- Memory Subsystem
- I/O-Subsystem
- System Architecture

- Compilers
- Libraries
- Tools
- ISVs

Technology Leadership Driving Volume Economics

- ▶ 90NM PROCESS PRODUCTION, 65NM PROTOTYPE
- ▶ 300MM WAFERS PRODUCTION
- TERAHERTZ TRANSISTOR
- TRI-GATE TRANSISTOR
- ► HIGH-K GATE DIELECTRIC

All features and dates specified are targets provided for planning purposes only and are subject to change without notice.

Performance = Architectural Innovation + Speed

Enable more capabilities, performance, and flexibility to end users beyond processor speed.

Multi-Core Transition ...dual core a natural evolution

Intel's manufacturing leadership (90nm, 65nm) enables leading multi-core. Intel® Itanium® 2 architecture has smaller core size – enabling up to 2x more cores per die than IA-32 for higher performance at same cost

Intel[®] Itanium[®] Architecture Leading the way

" Eventually one billion transistors, or electronic switches, may crowd a single chip, 1,000 times more than possible today."

National Geographic, 1982

**codename

NEXT GENERATION: MONTECITO

- DUAL-CORE & MULTI-THREADING
- PERFORMANCE INCREASE
- 90NM PROCESS
- HIGHER FREQENCY, LOWER POWER
- 2005 INTRODUCTION

int_{el}.

Available Itanium® Architecture Systems

A wide range of solutions from many vendors ...

©2004 Intel Corporation

October 2004

Performance Scaling

int_{el}.

Visualization with Itanium® Architecture

Silicon Graphics Prism

http://www.sgi.com/products/visualization/prism/overview.html

Technology Trends in Memory & I/O

- Multi-channel DDR2 Memory
- Fully-Buffered DIMMs (FB-DIMM) are coming
- PCI-Express* (4x, 8x, 16x)
- PCI-Express based Graphics (16x: 8GB/s)
- InfiniBand* on PCI-Express (3x faster than PCI-X)
- 10GbE is going into volume
- SATA and SAS is taking off

www.intel.com/software/products/

Intel® Software Development Products

Tools for improving application performance

Performance, Compatibility, Support, Productivity

3 Levels of Development Tools

 \leftarrow Level of Parallelism \rightarrow

		Serial/Node Level (Fine Grain)	SMP/Cluster Level (Medium Grain)	Job Parallel/Grid Level (Coarse Grain)
Programming Model		Compilers	OpenMP MPI-2.0 Cluster OMP	UNICORE DRMAA G-API
Performance Libraries		MKL,IPP	Cluster MKL	GPE
Development Tools	Performance Analysis	VTune	Thread Profiler Trace Analyzer Trace Collector	
	Debugging	IDB	Thread checker IDB-MPP	
		Continue	Enhancing	Engaging

intel

Summary

The Economics of High-Performance Computing have changed.

High-Performance Computing solutions must track Moore's law to be viable.

Intel is playing a key role in accelerating HPC solutions for science, engineering and business with open commercial off the shelf technology leadership and working with the industry and end-users.

High-Performance Computing with Intel® Architecture PFLOPS

today ...

tomorrow ...

GFLOPS

yesterday ...

int_{el}.

Thank You !

www.intel.com/go/hpc

