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| Abstraction in Programming |

Programming models and languages bridge the gap between
“reality” and hardware — at different levels of abstraction - e.g.,

- assembly languages

- general-purpose procedural languages

- functional languages

- very high-level domain-specific languages




| The Emergence of High-L evel Sequential L anguages |

Thedesignersof thevery first high level programming language
wer e awar e that their success depended on acceptable
performance of the generated target programs:

John Backus (1957): “... It wasour belief that if FORTRAN ... wereto translate any
reasonable scientific source program into an object program only half asfast as its
hand-coded counterpart, then acceptance of our system would be in serious danger ...”




The Crisis of High Performance Computing

¢ Current HPC hardware: large clusters at reasonable cost
- commadity clusters or custom MPPs
- off-the-shelf processors and memory components, built for mass market
- |atency and bandwidth problems

¢ Current HPC software
- application efficiency sometimesin single digits
- low-productivity “local view” programming models dominate
explicit processors: local views of data
program state associated with memory regions
explicit communication intertwined with the algorithm
wide gap between domain of scientist and programming language

- Inadequate programming environments and tools
- higher level approaches (e.g., HPF) did not succeed, for a variety of reasons



State-of-the-Art

Current parallel programming language, compiler, and tool
technologies are unable to support high productivity computing

->

New programming models, languages,
compiler, and tool technologiesare
necessary to address the productivity
demands of future systems



Goals

¢ Make Scientists and Engineers mor e productive:

provide a higher level of abstraction

€ Support “Abstraction without Guilt” [Ken Kennedy]:
Increase programming language usability without

sacrificing performance
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Productivity Challenges of Peta-Scale Systems

¢ Largescalearchitectural parallelism

- hundreds of thousands of processors
- component failures may occur in relatively short intervals

¢ Extreme non uniformity in data access

¢ Applications are becoming larger and more complex
- multi-disciplinary, multi-language, multi-paradigm
- dynamic, irregular, and adaptive

¢ L egacy codes pose a problem: long lived applications, surviving
many gener ations of hardware
- from F77 to F90, C/C++, MPI, Coarray Fortran etc.

- automatic re-write under constraint of performance portability is difficult
A

Performance, user productivity, robustness, portability



Programming Modelsfor High Productivity Computing
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Programming M odel |ssues

¢ Programming modelsfor high productivity computing and their realizations
can be characterized along (at least) three dimensions:

- Semantics

- user productivity (time to solution)
- performance
€ Semantics: a mapping from programs to functions specifying input/output
behavior of the program:
- S P =2F,whereeachfin Fisafunction f:1 =2 O

¢ User productivity (programmability): a mapping from programsto a
characterization of structural complexity:

- UP=2N

¢ Performance: a mapping from programs to functions specifying the complexity
of the program in terms of its execution on areal or abstract target machine:

- C:P 2 G,whereeachgin Gisafunctiong: | = N*
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High Productivity
Computing Systems

Goals:

» Provide a new generation of economically viable high productivity computing
systems for the national security and industrial user community (2007 — 2010)

Impact:

® Performance (efficiency): critical national security
applications by a factor of 10X to 40X

® Productivity (time-to-solution)

® Portability (transparency): insulate research and
operational application software from system

® Robustness (reliability): apply all known techniques
to protect against outside attacks, hardware faults,

& programming errors

Applications:

® Intelligence/surveillance, reconnaissance, cryptanalysis, airborne contaminant modeling and
biotechnology

R&D

Performance ' Fregramming
Characterization Models
& Prediction
Hardware
System Technology
Architecture = o qvare

Technology

Indusg,  R8D

HPCS Program Focus Areas

Fill the Critical Technology and Capability Gap
Today (late 80's HPC technology).....to.....Future (Quantum/Bio Computing)




The Cascade Proj ect

¢ Oneyear Concept Study, July 2002 -- June 2003
¢ Threeyear Prototyping Phase, July 2003 -- June 2006
¢ Led by Cray Inc. (Burton Smith)

ePartners
- Caltech/JPL
- University of Notre Dame

- Stanford University

¢ Collaboratorsin the Programming Environment Area
David Callahan, Brad Chamberlain, Mark James, John Plevyak




Key Elements of the Cascade Architecture

¢ High performance networ ks and multithreading contribute to
tolerating memory latency and improving memory bandwidth

¢ Hardware support for locality awar e programming and
program-controlled selection of UMA/NUMA data access avoid
serious performance problems present in current architectures

¢ Shared address space without global cache coherence eliminates
a major source of bottlenecks

€ Hierarchical two-level processing structure exploitstemporal as
well as spatial locality

¢ Lightweight processorsin “smart memory” provide a
computational fabric aswell asan introspection infrastructure



A Simplified Global View of the Cascade Architecture
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A Cascade L ocale
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L ightweight Processorsand Threads

¢ Lightweight processors
- co-located with memory
- focuson availahility
- full exploitation is not a primary system goal

¢ Lightweight threads

- minimal state— high rate context switch
- Spawned by sending a parcel to memory

¢ Exploiting spatial locality
- fine-grain: reductions, prefix operations, search
- coarse-grain: data distribution and alignment

¢ Saving bandwidth by migrating threadsto data



Key Issuesin High Productivity L anguages

Critical Functionality Orthogonal Language Issues

High-Level Features for ‘ C  global address space D

Explicit Concurrency

‘ C object orientation >
Cgeneric programming)
High-Level Support for Ex o

o . tensibility
Distributed Collections C >
sy D

C performance transparency )

High-Level Features for
Locality Control

High-Level Support for
Programming-In-the-Large




L ocality Awareness. Distribution, Alignment, Affinity
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* Model partitioning of physical domains
e Support dynamic reshaping
* Express data/thread affinity
e Support user-defined distributions




| Design Criteria of the“ Chapel” Programming L anguage |

¢ Global name space

- even in the context of a NUMA maodel
- avoid “local view” programming model of MPI, Coarray Fortran, UPC

€ Multiple models of parallelism

@ Provide support for:
- explicit parallél programming
- locality-aware programming
- interoperahility with legacy codes (MPI, Coarray Fortran, UPC, etc.)
- generic programming



Chapel Basics

¢ A modern base language
- Strongly typed
- Fortran-like array features
- Objected-oriented
- Module structure for name space management
- Optional automatic storage management

¢ High performance features

- Abstractionsfor parallelism
data parallelism (domains, forall)
task parallelism (cobegin)
- Locality management via data distributions and affinity



TypeTree

primitive domain collection function
homogeneous heterogeneous iterator other function
collection collection

1IN /N

array sequence class record



L anguage Design Highlights

¢ The"Concrete Language” enhances HPF and ZPL

- domains as first-class objects: index space, distribution, and associated set of arrays
- generalized arrays and HPF-type data distributions

- support for automatic partitioning of dynamic graph-based data structures

- high-level control for communication (halos,...)

- abstraction of iteration: generalization of the CLU iterator

¢ The"Abstract Language” supportsgeneric programming

- abstraction of types: type inference from context

- data structure inference: system-selected implementation for programmer-specified
object categories

- specialization using cloning



Domains

“ Index sets: Cartesian products, sparse, opague
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Example: Matrix Vector Multiplication V1

var Mat: domain(2) =[1..m 1..n];
var Mat Col : dommin(1l) = Mat(2);
var Mat Row. domain(1l) = Mat(1);
var A: array [ Mat] of float;

var v: array [MatCol] of float;
var s: array [MatRow] of float;

s = sum(din¥2) [i,j:Mat] A(i,j)*v(]);



Example: Matrix Vector Multiplication V2

var L: array[1l..pl,1..p2] of |ocale;

var Mat: domai n(2) dist(block,block) to L =[1..m1l..n];
var MatCol : domain(l) align(*,Mat(2)) = Mat(2);
var Mat Row. domain(1l) align(Mat(1),*) = Mat(1);

var A array [ Mat] of fl oat;
var v: array [MatCol] of float;
var s: array [MatRow] of float;

s = sum(din¥2) [i,j:Mat] A(i,j)*v(]);
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Example: Matrix Vector Multiplication V3

var L: array[1l..pl,1..p2] of locale;

|

|

|

|

|

:var Mat : domai n( spar se?)
: di st (nyspdist) to L
| | ayout ( nyspl ay)

| =[1..m1..n]

| wher e enuner at enonzer oes() ;
|

|

|

|

|

|

|

Mat Col : domain(1) align(*, Mat(2))

; Mat ( 2) ;
r Mat Row. domain(1l) align(Mat(1),*)

Mat (1) ;

yvar A array [ Mat] of fl oat;
| var v: array [MatCol] of fl oat;
:var s: array [MatRow] of float;

:S = sunm(dine2) [i,j:Mat] A(i,j)*v(]);



L anguage Summary

¢ Global name space

¢ High level control features supporting explicit parallelism
¢ High level locality management

¢ High level support for collections

¢ Statictyping

¢ Support for generic programming
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| ssues in Programming Environments and Tools

¢ Reliability Challenges
- massive parallelism poses new problems
- fault prognostics, detection, recovery
- data distribution may cause vital data to be spread across all nodes

¢ (Semi) Automatic Tuning

- closed loop adaptive control: measurement, decision-making, actuation
- information exposure: users, compilers, runtime systems
- learning from experience: databases, data mining, reasoning systems

€ | ntrospection
- atechnology for support of validation, fault detection, performance tuning




Example: Offline Performance Tuning
sour ce Transformation
program system ﬁ

Parallelizing
compiler

tar get
program

end of
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execution on
target machine



L egacy Code Migration

€ Rewriting Legacy Codes
- preservation of intellectual content
- opportunity for exploiting new hardware, including new algorithms
- code size may preclude practicality of rewrite

¢ L anguage, compiler, tool, and runtime support

- (Semi) automatic tools for migrating code
- incremental porting

- transition of performance-critical sections requires highly-
sophisticated software for automatic adaptation

high-level analysis
pattern matching and concept comprehension
optimization and specialization




Potential Uses of Lightweight Threads

¢ Finegrain application parallelism
¢ |mplementation of a service layer

¢ Components of agent systemsthat asynchronously monitor the
computation performing introspection, and dealing with:
- dynamic program validation
- fault tolerance
- intrusion prevention and detection
- performance analysis and tuning
- support of feedback-oriented compilation

¢ |Introspection can be defined as a system’s ability to:
- exploreits own properties
- reason about itsinternal state
- Mmake decisions about appropriate state changes where necessary



Example: A Society of Agentsfor Performance Analysis and
Feedback-Oriented Tuning
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Conclusion

¢ Today’sprogramming languages, models, and tools cannot deal
with 2010 ar chitectures and application requirements

¢ Peta scale architectures will pose new challenges but may
provide enhanced support for high level languages and compilers

¢ The Cascade programming language “ Chapel” targetsthe
creation of a viable language system together with a
programming environment for economically feasible and robust
high productivity computing of the future

D.Callahan, B.Chamberlain, H.P.Zima: The Cascade High Productivity Language
Proceedings of the HIPS2004 Workshop, Santa Fe, New Mexico, April 2004



