'he Cascade High Productivity Programming
Language

Hans P. Zima

University of Vienna, Austria

and

JPL, California Institute of Technology, Pasadena, CA

CMWF Workshop on the Use of High Performance Computing in Meteorolog
Reading, UK, October 25, 2004

| Contents |

1 Introduction

2 Programming Models for High Productivity
Computing Systems

3 Cascade and the Chapel Language Design
4 Programming Environments

5 Conclusion

| Abstraction in Programming |

Programming models and languages bridge the gap between
“reality” and hardware — at different levels of abstraction - e.g.,

- assembly languages

- general-purpose procedural languages

- functional languages

- very high-level domain-specific languages

| The Emergence of High-L evel Sequential L anguages |

Thedesignersof thevery first high level programming language
wer e awar e that their success depended on acceptable
performance of the generated target programs:

John Backus (1957): “... It wasour belief that if FORTRAN ... wereto translate any
reasonable scientific source program into an object program only half asfast as its
hand-coded counterpart, then acceptance of our system would be in serious danger ...”

The Crisis of High Performance Computing

¢ Current HPC hardware: large clusters at reasonable cost
- commadity clusters or custom MPPs
- off-the-shelf processors and memory components, built for mass market
- |atency and bandwidth problems

¢ Current HPC software
- application efficiency sometimesin single digits
- low-productivity “local view” programming models dominate
explicit processors: local views of data
program state associated with memory regions
explicit communication intertwined with the algorithm
wide gap between domain of scientist and programming language

- Inadequate programming environments and tools
- higher level approaches (e.g., HPF) did not succeed, for a variety of reasons

State-of-the-Art

Current parallel programming language, compiler, and tool
technologies are unable to support high productivity computing

->

New programming models, languages,
compiler, and tool technologiesare
necessary to address the productivity
demands of future systems

Goals

¢ Make Scientists and Engineers mor e productive:

provide a higher level of abstraction

€ Support “Abstraction without Guilt” [Ken Kennedy]:
Increase programming language usability without

sacrificing performance

| Contents |

1

2 Programming Modelsfor High Productivity
Computing Systems

Productivity Challenges of Peta-Scale Systems

¢ Largescalearchitectural parallelism

- hundreds of thousands of processors
- component failures may occur in relatively short intervals

¢ Extreme non uniformity in data access

¢ Applications are becoming larger and more complex
- multi-disciplinary, multi-language, multi-paradigm
- dynamic, irregular, and adaptive

¢ L egacy codes pose a problem: long lived applications, surviving
many gener ations of hardware
- from F77 to F90, C/C++, MPI, Coarray Fortran etc.

- automatic re-write under constraint of performance portability is difficult
A

Performance, user productivity, robustness, portability

Programming Modelsfor High Productivity Computing

Programming
Model

Semantics

conceptual view of Productivity
data and control Model

realizations

Programming @
Language =

Programming

Language
+

Directives

Execution
Model

abstract machine

Command-line
Interface

Programming M odel |ssues

¢ Programming modelsfor high productivity computing and their realizations
can be characterized along (at least) three dimensions:

- Semantics

- user productivity (time to solution)
- performance
€ Semantics: a mapping from programs to functions specifying input/output
behavior of the program:
- S P =2F,whereeachfin Fisafunction f:1 =2 O

¢ User productivity (programmability): a mapping from programsto a
characterization of structural complexity:

- UP=2N

¢ Performance: a mapping from programs to functions specifying the complexity
of the program in terms of its execution on areal or abstract target machine:

- C:P 2 G,whereeachgin Gisafunctiong: | = N*

| Contents |

3 Cascade and the Chapel Language Design
4
5

High Productivity
Computing Systems

Goals:

» Provide a new generation of economically viable high productivity computing
systems for the national security and industrial user community (2007 — 2010)

Impact:

® Performance (efficiency): critical national security
applications by a factor of 10X to 40X

® Productivity (time-to-solution)

® Portability (transparency): insulate research and
operational application software from system

® Robustness (reliability): apply all known techniques
to protect against outside attacks, hardware faults,

& programming errors

Applications:

® Intelligence/surveillance, reconnaissance, cryptanalysis, airborne contaminant modeling and
biotechnology

R&D

Performance ' Fregramming
Characterization Models
& Prediction
Hardware
System Technology
Architecture = o qvare

Technology

Indusg, R8D

HPCS Program Focus Areas

Fill the Critical Technology and Capability Gap
Today (late 80's HPC technology).....to.....Future (Quantum/Bio Computing)

The Cascade Proj ect

¢ Oneyear Concept Study, July 2002 -- June 2003
¢ Threeyear Prototyping Phase, July 2003 -- June 2006
¢ Led by Cray Inc. (Burton Smith)

ePartners
- Caltech/JPL
- University of Notre Dame

- Stanford University

¢ Collaboratorsin the Programming Environment Area
David Callahan, Brad Chamberlain, Mark James, John Plevyak

Key Elements of the Cascade Architecture

¢ High performance networ ks and multithreading contribute to
tolerating memory latency and improving memory bandwidth

¢ Hardware support for locality awar e programming and
program-controlled selection of UMA/NUMA data access avoid
serious performance problems present in current architectures

¢ Shared address space without global cache coherence eliminates
a major source of bottlenecks

€ Hierarchical two-level processing structure exploitstemporal as
well as spatial locality

¢ Lightweight processorsin “smart memory” provide a
computational fabric aswell asan introspection infrastructure

A Simplified Global View of the Cascade Architecture

Global Interconnection Network

HWP

HWP

SW-controlled Cache SW-controlled Cache

= =

I Smart Memory I

I Smart Memory I

Locale Locale

A Cascade L ocale

Heavyweight Processor
Vector
DRAM Multithreaded

DRAM

Streaming

LWP| LWP| LWP|... | LWP

LWP| LWP| LWP| | LWP

Lightweight Processor Chip

DRAM

Lightweight Processor Chip [C il isted h] Multithreaded
Multithreaded ompiier-assisied cacne [cache |
| cache |
DRAM

Locale

LWP| LWP| LWP|... | LWP

tweliweliwel . Tiwe Interconnect

Lightweight Processor Chip

Lightweight Processor Chip Multithreaded
Multithreaded | cache |
| cache |
DRAM
Network DRAM

Router

LWP| LWP| LWP| | LWP

LWP| LWP| LWP|... | LWP

Lightweight Processor Chip

Multithreaded
| cache |

Lightweight Processor Chip

Multithreaded
| cache |

To Other Locales

Source: David Callahan, Cray Inc.

L ightweight Processorsand Threads

¢ Lightweight processors
- co-located with memory
- focuson availahility
- full exploitation is not a primary system goal

¢ Lightweight threads

- minimal state— high rate context switch
- Spawned by sending a parcel to memory

¢ Exploiting spatial locality
- fine-grain: reductions, prefix operations, search
- coarse-grain: data distribution and alignment

¢ Saving bandwidth by migrating threadsto data

Key Issuesin High Productivity L anguages

Critical Functionality Orthogonal Language Issues

High-Level Features for ‘ C global address space D

Explicit Concurrency

‘ C object orientation >
Cgeneric programming)
High-Level Support for Ex o

o . tensibility
Distributed Collections C >
sy D

C performance transparency)

High-Level Features for
Locality Control

High-Level Support for
Programming-In-the-Large

L ocality Awareness. Distribution, Alignment, Affinity

[Tuesday & October Toae 120TC ECMWF Forecast tv 72 VT Friday o October 1598 1

500 hPa geop height

HPCS architecture \J _

I

e

£

SR

N
NS

s :
A‘h}!&.’g\ vy AN,
SRS
S AAAAY,

Data/thread affinity

align

Issues

* Model partitioning of physical domains
e Support dynamic reshaping
* Express data/thread affinity
e Support user-defined distributions

| Design Criteria of the“ Chapel” Programming L anguage |

¢ Global name space

- even in the context of a NUMA maodel
- avoid “local view” programming model of MPI, Coarray Fortran, UPC

€ Multiple models of parallelism

@ Provide support for:
- explicit parallél programming
- locality-aware programming
- interoperahility with legacy codes (MPI, Coarray Fortran, UPC, etc.)
- generic programming

Chapel Basics

¢ A modern base language
- Strongly typed
- Fortran-like array features
- Objected-oriented
- Module structure for name space management
- Optional automatic storage management

¢ High performance features

- Abstractionsfor parallelism
data parallelism (domains, forall)
task parallelism (cobegin)
- Locality management via data distributions and affinity

TypeTree

primitive domain collection function
homogeneous heterogeneous iterator other function
collection collection

1IN /N

array sequence class record

L anguage Design Highlights

¢ The"Concrete Language” enhances HPF and ZPL

- domains as first-class objects: index space, distribution, and associated set of arrays
- generalized arrays and HPF-type data distributions

- support for automatic partitioning of dynamic graph-based data structures

- high-level control for communication (halos,...)

- abstraction of iteration: generalization of the CLU iterator

¢ The"Abstract Language” supportsgeneric programming

- abstraction of types: type inference from context

- data structure inference: system-selected implementation for programmer-specified
object categories

- specialization using cloning

Domains

“ Index sets: Cartesian products, sparse, opague

- O © (®)
O (.| 20
“* locale view: a logical view for a set of locales
N LI
]]]

¢ distribution: a mapping of an index set to a locale view

EmE [- |_HE "

11— O 11— . . <= o

]] = "W o?
-

< array: a map from an index set to a collection of variables

o B O

Source: Brad Chamberlain, Cray Inc.

Example: Matrix Vector Multiplication V1

var Mat: domain(2) =[1..m 1..n];
var Mat Col : dommin(1l) = Mat(2);
var Mat Row. domain(1l) = Mat(1);
var A: array [Mat] of float;

var v: array [MatCol] of float;
var s: array [MatRow] of float;

s = sum(din¥2) [i,j:Mat] A(i,j)*v(]);

Example: Matrix Vector Multiplication V2

var L: array[1l..pl,1..p2] of |ocale;

var Mat: domai n(2) dist(block,block) to L =[1..m1l..n];
var MatCol : domain(l) align(*,Mat(2)) = Mat(2);
var Mat Row. domain(1l) align(Mat(1),*) = Mat(1);

var A array [Mat] of fl oat;
var v: array [MatCol] of float;
var s: array [MatRow] of float;

s = sum(din¥2) [i,j:Mat] A(i,j)*v(]);

m“711234445 mui1345

D! |C!

ﬁ |

21 |2
16 |3
2 |1
13 |2

mni12233455

Sparse Matrix Distribution

(@

Ci2145;

0i3973

O ddAo

coYocoooco0 Z°C°

oge@oocod o ©° &

coo e OO0 ooo
~ O

coocoocoofo Jm

cooo e o

eNeNoNeNoNelle

moooooo

o
el NeloNelle

Example: Matrix Vector Multiplication V3

var L: array[1l..pl,1..p2] of locale;

|

|

|

|

|

:var Mat : domai n(spar se?)
: di st (nyspdist) to L
| | ayout (nyspl ay)

| =[1..m1..n]

| wher e enuner at enonzer oes() ;
|

|

|

|

|

|

|

Mat Col : domain(1) align(*, Mat(2))

; Mat (2) ;
r Mat Row. domain(1l) align(Mat(1),*)

Mat (1) ;

yvar A array [Mat] of fl oat;
| var v: array [MatCol] of fl oat;
:var s: array [MatRow] of float;

:S = sunm(dine2) [i,j:Mat] A(i,j)*v(]);

L anguage Summary

¢ Global name space

¢ High level control features supporting explicit parallelism
¢ High level locality management

¢ High level support for collections

¢ Statictyping

¢ Support for generic programming

| Contents |

3

4 Programming Environments

S

| ssues in Programming Environments and Tools

¢ Reliability Challenges
- massive parallelism poses new problems
- fault prognostics, detection, recovery
- data distribution may cause vital data to be spread across all nodes

¢ (Semi) Automatic Tuning

- closed loop adaptive control: measurement, decision-making, actuation
- information exposure: users, compilers, runtime systems
- learning from experience: databases, data mining, reasoning systems

€ | ntrospection
- atechnology for support of validation, fault detection, performance tuning

Example: Offline Performance Tuning
sour ce Transformation
program system ﬁ

Parallelizing
compiler

tar get
program

end of
tuning cycle

execution on
target machine

L egacy Code Migration

€ Rewriting Legacy Codes
- preservation of intellectual content
- opportunity for exploiting new hardware, including new algorithms
- code size may preclude practicality of rewrite

¢ L anguage, compiler, tool, and runtime support

- (Semi) automatic tools for migrating code
- incremental porting

- transition of performance-critical sections requires highly-
sophisticated software for automatic adaptation

high-level analysis
pattern matching and concept comprehension
optimization and specialization

Potential Uses of Lightweight Threads

¢ Finegrain application parallelism
¢ |mplementation of a service layer

¢ Components of agent systemsthat asynchronously monitor the
computation performing introspection, and dealing with:
- dynamic program validation
- fault tolerance
- intrusion prevention and detection
- performance analysis and tuning
- support of feedback-oriented compilation

¢ |Introspection can be defined as a system’s ability to:
- exploreits own properties
- reason about itsinternal state
- Mmake decisions about appropriate state changes where necessary

Example: A Society of Agentsfor Performance Analysis and
Feedback-Oriented Tuning

compiler I

!

instrumenter I

data reduction and filtering

simplification
agent

data collection

execution of instrumented
application program

?

invariant
checking
....... agent

analysis
agent N, 0 .. e AN N e

.
......
. e ®

.....
......

. e ®

. oo
.......
. .

. e ®

Performance Exception Handler

Conclusion

¢ Today’sprogramming languages, models, and tools cannot deal
with 2010 ar chitectures and application requirements

¢ Peta scale architectures will pose new challenges but may
provide enhanced support for high level languages and compilers

¢ The Cascade programming language “ Chapel” targetsthe
creation of a viable language system together with a
programming environment for economically feasible and robust
high productivity computing of the future

D.Callahan, B.Chamberlain, H.P.Zima: The Cascade High Productivity Language
Proceedings of the HIPS2004 Workshop, Santa Fe, New Mexico, April 2004

