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Programming models and languages bridge the gap between 

“reality” and hardware – at different levels of abstraction - e.g.,

�assembly languages

�general-purpose procedural languages

�functional languages

�very high-level domain-specific languages
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�very high-level domain-specific languages

Abstraction in Programming

Abstraction implies loss of information –
gain in simplicity, clarity, verifiability, portability

versus potential performance degradation



The designers of the very first high level programming language 
were aware that their success depended on acceptable 
performance of the generated target programs:

John Backus (1957): “… It was our belief that if FORTRAN … were to translate any 
reasonable scientific source program into an object program only half as fast as  its 
hand-coded counterpart, then acceptance of our system would be in serious danger …”
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The Emergence of High-Level Sequential Languages

High-level algorithmic languages became generally 
accepted standards for sequential programming since 

their advantages outweighed any performance drawbacks

For parallel programming
no similar development took place



� Current HPC hardware: large clusters at reasonable cost
�commodity clusters or custom MPPs

�off-the-shelf processors and memory components, built for mass market

�latency and bandwidth problems

� Current HPC software 
�application efficiency sometimes in single digits

�low-productivity “local view” programming models dominate

� explicit processors: local views of data

� program state associated with memory regions

� explicit communication intertwined with the algorithm

� wide gap between domain of scientist and programming language

�inadequate programming environments and tools

�higher level approaches (e.g., HPF) did not succeed, for a variety of reasons
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The Crisis of High Performance Computing 



Current parallel programming language, compiler, and tool 
technologies are unable to support high productivity computing

�

New programming models, languages,     
compiler, and tool technologies are 
necessary to address the productivity 
demands of future systems
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State-of-the-Art



� Make Scientists and Engineers more productive:

provide a higher level of abstraction

� Support “Abstraction without Guilt” [Ken Kennedy]:

increase programming language usability without 

sacrificing  performance
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� Large scale architectural parallelism
�hundreds of thousands of processors 

�component failures may occur in relatively short intervals

� Extreme non uniformity in data access 

� Applications are becoming larger and more complex
�multi-disciplinary, multi-language, multi-paradigm

�dynamic, irregular, and adaptive

� Legacy codes pose a problem: long lived applications, surviving 
many generations of hardware
�from F77 to F90, C/C++, MPI, Coarray Fortran etc.

�automatic re-write under constraint of performance portability is difficult 
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�� Applications are becoming larger and more complexApplications are becoming larger and more complex
�multi-disciplinary, multi-language, multi-paradigm

�dynamic, irregular, and adaptive

�� Legacy codes pose a problem: long lived applications, surviving Legacy codes pose a problem: long lived applications, surviving 
many generations of hardwaremany generations of hardware
�from F77 to F90, C/C++, MPI, Coarray Fortran etc.

�automatic re-write under constraint of performance portability is difficult 

Productivity Challenges of Peta-Scale Systems

Performance, user productivity, robustness, portability
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� Programming models for high productivity computing and their realizations 
can be characterized along (at least) three dimensions:
� semantics 

� user productivity (time to solution)

� performance

� Semantics: a mapping from programs to functions specifying input/output 
behavior of the program:
�S: P � F , where each f in F is a function f: I � O

� User productivity (programmability): a mapping from programs to a  
characterization of structural complexity:
�U: P � N

� Performance: a mapping from programs to functions specifying the complexity
of the program in terms of its execution on a real or abstract target machine: 
�C: P � G, where each g in G is a function g : I � N*
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Programming Model Issues



1 Introduction

2 Programming Models for High Productivity 
Computing Systems

3 Cascade and the Chapel Language Design

4 Programming Environments

5 Conclusion

11 IntroductionIntroduction

22 Programming Models for High Productivity Programming Models for High Productivity 
Computing SystemsComputing Systems

33 Cascade and the Chapel Language DesignCascade and the Chapel Language Design

44 Programming EnvironmentsProgramming Environments

55 ConclusionConclusion

Contents



High Productivity
Computing Systems

Goals:Goals:

� Provide a new generation of economically viable high productivity computing 
systems for the national security and industrial user community (2007 – 2010)

Impact:
� Performance (efficiency): critical national security 

applications by a factor of 10X to 40X
� Productivity (time-to-solution) 
� Portability (transparency): insulate research and 

operational application software from system
� Robustness (reliability): apply all known techniques 

to protect against outside attacks, hardware faults, 
& programming errors

Fill the Critical Technology and Capability Gap
Today (late 80’s HPC technology)…..to…..Future (Quantum/Bio Computing)

Fill the Critical Technology and Capability Gap
Today (late 80’s HPC technology)…..to…..Future (Quantum/Bio Computing)

Applications:
� Intelligence/surveillance, reconnaissance, cryptanalysis, airborne contaminant modeling and 

biotechnology

HPCS Program Focus Areas



� One year Concept Study, July 2002 -- June 2003

� Three year Prototyping Phase, July 2003 -- June 2006 

� Led by Cray Inc. (Burton Smith)

�Partners
�Caltech/JPL

�University of Notre Dame

�Stanford University

�Collaborators in the Programming Environment Area

David Callahan, Brad Chamberlain, Mark James, John Plevyak
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The Cascade Project



� High performance networks and multithreading contribute to 
tolerating memory latency and improving memory bandwidth

� Hardware support for locality aware programming and 
program-controlled selection of UMA/NUMA data access avoid 
serious performance problems present in current architectures

� Shared address space without global cache coherence eliminates 
a major source of bottlenecks

� Hierarchical two-level processing structure exploits temporal as 
well as spatial locality

� Lightweight processors in “smart memory” provide a 
computational fabric as well as an introspection infrastructure
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Key Elements of the Cascade Architecture 



A Simplified Global View of the Cascade Architecture
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Locale Locale



Heavyweight Processor
Vector

Multithreaded
Streaming

Compiler-assisted cache

Locale
Interconnect

Network
Router

To Other Locales

DRAM

Lightweight Processors

Multithreaded

cache

Lightweight Processor Chip

Multithreaded

LWP LWP LWP LWP…

DRAM

Lightweight Processors

Multithreaded

cache

Lightweight Processor Chip

Multithreaded

LWP LWP LWP LWP…

DRAM

Lightweight Processors

Multithreaded

cache

Lightweight Processor Chip

Multithreaded

LWP LWP LWP LWP…

DRAM

Lightweight Processors

Multithreaded

cache

Lightweight Processor Chip

Multithreaded

LWP LWP LWP LWP…

DRAM

Lightweight Processors

Multithreaded

cache

Lightweight Processor Chip

Multithreaded

LWP LWP LWP LWP…

DRAM

Lightweight Processors

Multithreaded

cache

Lightweight Processor Chip

Multithreaded

LWP LWP LWP LWP…

A Cascade Locale

Source: David Callahan, Cray Inc.



�Lightweight processors
�co-located with memory

�focus on availability

�full exploitation is not a primary system goal

�Lightweight threads
�minimal state – high rate context switch

�spawned by sending a parcel to memory

�Exploiting spatial locality
�fine-grain: reductions, prefix operations, search

�coarse-grain: data distribution and alignment

�Saving bandwidth by migrating threads to data
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Lightweight Processors and Threads



Key Issues in High Productivity Languages

High-Level Features for 
Explicit Concurrency

High-Level Features for 
Locality Control

High-Level Support for 
Distributed Collections

global address space

Safety             

object orientation   

performance transparency

generic programming

Extensibility        

Critical Functionality Orthogonal Language Issues

High-Level Support for 
Programming-In-the-Large
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Locality Awareness: Distribution, Alignment, Affinity

distribute

Issues

• Model partitioning of physical domains 
• Support dynamic reshaping  
• Express data/thread affinity
• Support    user-defined distributions 



�Global name space
�even in the context of a NUMA model

�avoid “local view” programming model of MPI, Coarray Fortran, UPC

�Multiple models of parallelism

�Provide support for:
�explicit parallel programming

�locality-aware programming

�interoperability with legacy codes (MPI, Coarray Fortran, UPC, etc.)

�generic programming
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Design Criteria of the “Chapel” Programming Language



� A modern base language
�Strongly typed

�Fortran-like array features

�Objected-oriented 

�Module structure for name space management

�Optional automatic storage management

� High performance features
�Abstractions for parallelism

� data parallelism (domains, forall)

� task parallelism (cobegin)

�Locality management via data distributions and affinity
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Chapel Basics
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�The “Concrete Language” enhances HPF and ZPL
�domains as first-class objects: index space, distribution, and associated set of arrays

�generalized arrays and HPF-type data distributions

� support for automatic partitioning of dynamic graph-based data structures

�high-level control for communication (halos,…)

�abstraction of iteration: generalization of the CLU iterator

�The “Abstract Language” supports generic programming
�abstraction of types: type inference from context

�data structure inference: system-selected implementation for programmer-specified 
object categories

� specialization using cloning
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Language Design Highlights



� locale view: a logical view for a set of locales

� distribution: a mapping of an index set to a locale view

� array: a map from an index set to a collection of variables

Domains

� index sets: Cartesian products, sparse, opaque 

Source:  Brad Chamberlain, Cray Inc.



2) Separation of Concerns: 
Definition

var Mat:    domain(2) = [1..m, 1..n];
var MatCol: domain(1) = Mat(2);
var MatRow: domain(1) = Mat(1);

var A: array [Mat]    of float;
var v: array [MatCol] of float;
var s: array [MatRow] of float;

s = sum(dim=2) [i,j:Mat] A(i,j)*v(j);

Example: Matrix Vector Multiplication V1



var L: array[1..p1,1..p2] of locale;

var Mat:    domain(2) dist(block,block) to L = [1..m,1..n];
var MatCol: domain(1) align(*,Mat(2)) = Mat(2);
var MatRow: domain(1) align(Mat(1),*) = Mat(1);

var A: array [Mat]    of float;
var v: array [MatCol] of float;
var s: array [MatRow] of float;

s = sum(dim=2) [i,j:Mat] A(i,j)*v(j);

Example: Matrix Vector Multiplication V2
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Sparse Matrix Distribution



var L: array[1..p1,1..p2] of locale;

var Mat: domain(sparse2) 
dist(myspdist) to L
layout(mysplay) 
= [1..m,1..n]
where enumeratenonzeroes();

var MatCol: domain(1) align(*,Mat(2)) = Mat(2);
var MatRow: domain(1) align(Mat(1),*) = Mat(1);

var A: array [Mat]    of float;
var v: array [MatCol] of float;
var s: array [MatRow] of float;

s = sum(dim=2) [i,j:Mat] A(i,j)*v(j);

Example: Matrix Vector Multiplication V3



� Global name space

� High level control features supporting explicit parallelism 

� High level locality management

� High level support for collections

� Static typing

� Support for generic programming
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Language Summary
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�Reliability Challenges
�massive parallelism poses new problems

�fault prognostics, detection, recovery

�data distribution may cause vital data to be spread across all nodes

� (Semi) Automatic Tuning
�closed loop adaptive control: measurement, decision-making, actuation

�information exposure: users, compilers, runtime systems

�learning from experience: databases, data mining, reasoning systems

� Introspection
�a technology for support of validation, fault detection, performance tuning
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Issues in Programming Environments and Tools
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�Rewriting Legacy Codes
�preservation of intellectual content

�opportunity for exploiting new hardware, including new algorithms

�code size may preclude practicality of rewrite

�Language, compiler, tool, and runtime support
�(Semi) automatic tools for migrating code

�incremental porting

�transition of performance-critical sections requires highly-
sophisticated software for automatic adaptation 

� high-level analysis

� pattern matching and concept comprehension

� optimization and specialization

��Rewriting Legacy CodesRewriting Legacy Codes
�preservation of intellectual content

�opportunity for exploiting new hardware, including new algorithms

�code size may preclude practicality of rewrite

��Language, compiler, tool, and runtime supportLanguage, compiler, tool, and runtime support
�(Semi) automatic tools for migrating code

�incremental porting

�transition of performance-critical sections requires highly-
sophisticated software for automatic adaptation 

� high-level analysis

� pattern matching and concept comprehension

� optimization and specialization

Legacy Code Migration



� Fine grain application parallelism

� Implementation of a service layer

� Components of agent systems that asynchronously monitor  the 
computation performing introspection, and dealing with:
�dynamic program validation

� fault tolerance

� intrusion prevention and detection

�performance analysis and tuning

� support of feedback-oriented compilation

� Introspection can be defined as a system’s ability to:
� explore its own properties 

� reason about its internal state

�make decisions about appropriate state changes where necessary
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�dynamic program validation

� fault tolerance

� intrusion prevention and detection

�performance analysis and tuning

� support of feedback-oriented compilation

�� IntrospectionIntrospection can be defined as a systemcan be defined as a system’’s ability to:s ability to:
� explore its own properties 

� reason about its internal state

�make decisions about appropriate state changes where necessary

Potential Uses of Lightweight Threads



Example: A Society of Agents for Performance Analysis and 
Feedback-Oriented Tuning
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� Today’s programming languages, models, and tools cannot deal 
with 2010 architectures and application requirements

� Peta scale architectures will pose new challenges but may 
provide enhanced support for high level languages and compilers

� The Cascade programming language “Chapel” targets the 
creation of a viable language system together with a 
programming environment for economically feasible and robust 
high productivity computing of the future  
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