Running IFS on an LNXI Opteron cluster at ECMWF

George.Mozdzynski@ecmwf.int

Acknowledgements: Petra Kogel

Sami Saarinen

Peter Towers

Outline

- Motivation
- Opteron and P690+ clusters
- MPI communications
- IFS Forecast Model
- IFS 4D-Var
- Compilers
- Other S/W
- Conclusions

Motivation

- Linux clusters becoming more popular
- T0P500
 - Half of top 20 systems are Linux Clusters
 - Mostly in research organizations
- NWP centres still using proprietary systems
 - Strict operational schedules
 - Mix of operational and research workloads
- Can Linux clusters be deployed in NWP centres?
- Linux cluster at ECMWF
 - Single node server Oct 2003 (2 CPU Opteron 2.0 GHz)
 - LNXI Cluster Installed 2Q2004

System characteristics

	IBM P690+ LNXI Opteron			
Clusters	2 (Dec04)	1		
CPUs / cluster	2176	66		
Clock	1.9 GHz	2.2 GHz		
Peak Gflops / CPU	7.6	4.4		
Memory GB / node	32	4		
Useable memory / node	24	3.5		

AMD Opteron Architecture (2 CPU node)

Slide 6

IBM P690+ Node

Also local/remote memory

AIX SUPPORTS environment vars MEMORY_AFFINITY=MCM MP_TASK_AFFINITY=MCM

MPI Latency

	Latency
	micro-secs
Opteron 2.2 GHz Infiniband	5
IBM P690+ 1.9 GHz Federation	6
IBM P690 1.3 GHz Colony	24

MPI Bandwidth (PING-PONG)

MPI Bandwidth (PING-PING)

MPI Bandwidth/CPU

	MB/s	Links	MB/s	CPUs	MB/s
	/Link	/Node	/Node	/Node	/CPU
Opteron 2.2 GHz					
Infiniband	800	1	800	2	400
IBM P690+ 1.9 GHz Federation	1700	4	6800	32	213
IBM P690 1.3 GHz Colony	320	1**	320	8	40

^{**} one link per 8 CPU LPAR

MPI for Infiniband

OSU MVAPICH

- Used successfully for IFS applications
- Environment variables not inherited (easily resolved)

NCSA MPICH-VMI

- Encountered some problems with IFS

Open MPI

- Preliminary release at Supercomputing 2004
- Full MPI-2
- Combines technologies from
 - MVAPICH
 - LAM/MPI
 - Other implementations

RAPS8 IFS Forecast Model T_L399L62 using 32 CPUs

RAPS8 IFS Forecast Model T_L399L62 using 32 CPUs (and Federation switch)

IFS T_L399L62 Model

- IBM P690+ 1.9 GHz CPU (4 flops per clock)
 - 7.6 Gflops peak, 670 Mflop sustained (9% of peak)
- AMD Opteron 2.2 GHz CPU (2 flops per clock)
 - 4.4 Gflops peak, 620 Mflop sustained (14% of peak)
- Peak [M,G,T,P] flops is not a good indicator of performance for 'real' codes
 - Was ever so for vector v scalar
 - Also true for scalar CPUs
- P690+ achieves this as a 32-way SMP
 - More general purpose architecture (not all codes are MPI parallel)
 - Permits the use of OpenMP
 - For IFS this results in better scalability for large number of nodes

RAPS8 IFS 4D-Var T_L511L60 using 40 CPUs

RAPS8 IFS 4D-Var T_L511L60 using 52 CPUs

IFS T_L511L60 4D-Var

- T₁ 511L60 4D-Var is ECMWF's operational resolution
 - Problem is too big for our small Opteron cluster
 - Should run in < 1 hour
 - Validation of RAPS8 benchmark on non-IBM system
- Efficient parallel filesystem is essential for 4D-Var
 - P690+ GPFS / Federation ~ 1300 MB/s (2176 CPUs)
 - Opteron cluster Lustre / IP over Gigabit Ethernet ~ 100 MB/s (64 CPUs)
 - Performance of both filesystems are scalable
- IFS 4D-Var and Model show similar relative performance against IBM P690+ (IBM 8% faster)

Compilers for AMD Opteron

- Experience with Portland pgf90 v5.1 disappointing
 - 6 bug reports compiling RAPS7_fc IFS
 - No response for Portland Group
- pgf90 v5.2
 - Full F95 support
- Absoft Fortran95 v9.0
 - Reliable compiler, but slowest generated code
- PathScale pathf90 v1.2 (used for IFS runs)
 - Both reliable and good performance
 - Only one routine resulted in a runtime problem at high optimization (-O2)
 - Support for reading IBM unformatted (big endian) files

Other S/W

- System administration Clusterworx (Linux Networx)
- Batch subsystem Sun Grid Engine (being integrated)
- System monitoring GANGLIA
- Debuggers
 - Now: print,*
 - Future: Totalview / DDT
- Parallel file system Lustre 1.2.3 (CFS)
 - 6 nodes dedicated for Lustre (1 MDS, 5 OSS)
 - Raw write perf to single RAID5 device (FAStT600) ~ 35 MB/sec
 - With Lustre ~15 MB/sec
 - Today: GigaBit Ethernet 120 MB/sec, Lustre aggregate write ~ 90 MB/sec
 - Future: Lustre over Infiniband

Conclusions

- Performance of AMD Opteron / Infiniband is very competitive
 - Infiniband bandwidth limited by PCI-X today
 - Binding tasks to CPUs on Opteron (future)
- Support model when S/W comes from several sources?
- Software infrastructure sufficient to deploy cluster as a general purpose server
- Scalability to large o(1000) CPU cluster
 - Larger switches needed
 - Reliability
- Need experience first with use as a GP server

RAPS8 IFS 4D-Var T_L511L60 on IBM P690+

