Experimental seasonal hydrologic forecasting for the Western U.S.

Andy Wood, Alan Hamlet and Dennis Lettenmaier

University of Washington

HEPEX Workshop Reading, U.K. March 8-10, 2004

Outline

- 1. Overview of current activities / Challenges
- 2. Conclusions

Overview: Project Domain

Western US Forecasting Domain

This website presents current monthly-to-seasonal hydrologic, streamflow and reservoir system forecasts for the western U.S. The experimental effort is funded by primarily by NOAA/OGP, the <u>IRI/ARCS Regional Applications Project</u>, and the <u>NASA</u> <u>Seasonal-to-Interannual Prediction Project (NSIPP)</u>.

Currently, two forecast approaches are used, both centering on the use of macroscale hydrologic simulation with the <u>VIC model</u>:

- the Ensemble Streamflow Prediction (ESP, formerly Extended Streamflow Prediction) method; and the ESP method conditioned on ENSO and PDO states
- ensemble forecasts downscaled from several climate models (NCEP GSM and NASA NSIPP-1)

Forecast outputs include monthly streamflow ensembles, spatial distributions of snow water equivalent (SWE), soil moisture and runoff, and (*not yet active*) reservoir system storage and flow forecasts. In addition, the analyses of the initial hydrologic state at the forecast date constitute a nowcast of SWE and soil moisture conditions throughout the domain, based on observed meteorology.

If header with forecast links does not appear above, go to main page.

Overview: Forecasting System Evolution

 1998-9 Ohio R. basin w/ COE: First tried climate model-based seasonal forecasts on experimental (retrospective) basis

- 2000 Eastern US: First attempted real-time seasonal forecasts during drought condition in southeastern states -- results published in: Wood et al. (2001), JGR
 - 2001 Columbia R. basin: *Implemented approach during the PNW drought, again using climate model based approach*
- 2002 Western US: Retrospective analysis of forecasts over larger domain (for one climate model and for ESP)
- 2003 Columbia R. basin: New funding for "pseudo-operational" implementation for western US; began with pilot project in CRB (Funding from: NASA NSIPP; IRI/ARCS; NOAA GCIP/GAPP)

2004

Western US: expanded to western U.S domain for real-time forecasts; working to improve and evaluate methods each forecast cycle

Overview: UW Experimental West-wide hydrologic prediction system

Department of Civil and Environmental Engineering

Challenge: Climate Model Forecast Use

Overview: Bias Correction

numerous methods of downscaling and/or bias correction exist

- the relatively simple one we've settled on requires a sufficient retrospective climate model climatology, e.g.,
 - □ NCEP: hindcast ensemble climatology, 21 years X 10 member
 - □ NSIPP-1: AMIP run climatology, > 50 years, 9 member

Overview: VIC Hydrologic Model

Overview: Hydrologic Simulations

Challenge: Hydrologic State Initialization

Problem: met. data availability in 3 months prior to forecast has only a tenth of long term stations used to calibrate model

dense station network for model calibration

sparse station network in real-time

Solution: use interpolated monthly index station precip percentiles and temperature anomalies to extract values from higher quality retrospective forcing data, then disaggregate using daily index station signal.

Overview: Initial snow state assimilation

Problem

sparse station spin-up period incurs some systematic errors, but snow state estimation is critical

Solution

use SWE anomaly observations (from the 600+ station USDA/NRCS SNOTEL network and a dozen ASP stations in BC, Canada) to adjust snow state at the forecast start date

Overview: Initial snow state assimilation

SWE state differences due to assimilation of SNOTEL/ASP observations, Feb. 25, 2004

Overview: Initial conditions

Snow Water Equivalent (SWE) and Soil Moisture

Overview: Streamflow Forecast Locations

CRB Streamflow Forecast Points (clickable)

Overview: Streamflow Forecasts

hydrographs

targeted statistics

For		-	of average fo high percenti		APR-SEP	averag
			unconditional		ENSO-Neut	
#	NAME	0.1	0.5	0.9		0.5
1	MICAA	73	85	97		85
2	REVEL	73	85	98		85
3	ARROW	72	83	97		84
4	DUNCA	68	84	100		85
5	LIBBY	62	76	92		86
6	CORRA	64	79	91		83
7	HHORS	59	74	94		77
8	COLFA	58	76	90		82
9	KERRR	59	77	92		85
10	WANET	67	80	95		85
11	CHIEF	71	81	93		84
12	PRIES	70	81	93		83
13	DWORS	62	72	89		80
14	ICEHA	60	75	88		74
15	DALLE	72	81	91		83

raw ensemble data

Mica Lake,	BC					
5722.9	6644.9	9046.8	19563.8	44792.6	38968.7	9883.4
5806.2	6125.6	8715.4	41331.7	63017.9	14724.0	9218.0
6021.7	5659.0	10163.9	23089.4	48808.7	32002.6	15635.5
6008.6	6178.3	9259.0	32229.8	46713.3	22615.6	12493.9
5775.0	5313.0	7008.2	14508.3	53318.3	51655.1	19877.6
5781.6	5663.2	9679.3	29579.9	61400.8	28590.8	12592.2

Overview: Spatial Forecasts

monthly values, anomalies and percentiles of: *precip, temp, SWE, soil moisture, runoff* give streamflow forecasts greater context

SWE

Snow Water Equivalent (SWE) Forecasts (Feb. 25, 2004) (plot threshold: 50 mm SWE)

soil moisture

Conclusions

- Modern hydrologic methods can readily provide seasonal forecast results comparable to those in current operational use, and have great potential to do better.
- Bias issues in climate models must be addressed good retrospective model climatologies are essential.
- Forecasting would benefit greatly from an increased availability of realtime weather observations (esp., longer record & higher elevation stns).
- An understanding of the relative importance of hydrologic ICs and climate forecasts is helpful for setting system development priorities.
- retrospective forecast assessment must be possible to establish track record (problem for CPC, LDAS use w/ seasonal forecasts).

www.hydro.washington.edu/Lettenmaier/Projects/fcst/