Ensemble Hydrological Forecasting

Bob Moore and David Jones, CEH Wallingford Clive Pierce, JCHMR (Met Office), Wallingford

Overview

Drought Management

Flood Forecasting
Present
Future?

Drought management in the Thames Basin

•Historical rainfall ensembles

•Categorical probability rainfall forecast weighting

Thames surface water resource system

Risk assessment of reservoir storage shortfall and demand restrictions

Flood Forecasting

First Alert:

Hameldon Hill - 2km OC b

🕨 🛏 🗉 📶 🔍 🗖 11 🔜 🎸 🔳 🗙 📾 🗌

Improved display of radar rainfall across scales; 0 to 6 hours, 1, 2, 5 km

Hamedon Hill - Skm Qt LS HAMEDON HIL - Skm Qt LS HAMEDON HIL

HYRAD has been adopted as national standard by Environment Agency across England & Wales

First alert warning products

Unified NWP Model grids: global & mesoscale 12 hour ahead rainfall forecast from Mesoscale Model, Nimrod radar actual and catchment hyetograph 12 km, 0 to 2 days

Flow Forecasting & Modelling System (FFMS) Design

Model Network configuration

Propagation of uncertainty ?

Flood forecasting and warning

What ifs? Informal ensembles

a) Rainfall

Area-wide flow modelling

Land path

Surface flow

Return flow

Area-wide Hydrological Grid Model with rainfall ensembles

STochastic Ensemble Prediction System Model design

- Cascade framework to model dynamic scaling behaviour
- merging extrapolation nowcasts with NWP forecast

Sources of uncertainty / error

- diagnosed velocity fields
- Lagrangian temporal evolution
- NWP forecast
- initial state radar inferred rain rate

Forecast evolution

- blends extrapolation, NWP and noise cascades
- stochastic noise
 - replaces extrapolated features beyond their life times
 - introduces features unresolved by NWP
- 100 member ensemble

Stochastic noise progressively dominates the forecast from the smallest scales upwards.
This process is errected by the NW/D forecast

>This process is arrested by the NWP forecast.

- 4 km resolution
- 6 hour forecast
- 100 members

Towards probabilistic hydrological forecasting

Uncertainty in rainfall input dominates (Moore, 2002)

Ignore other error sources eg. rainfall-runoff model

Ensemble of river flow from ensemble of rain accumulation

> Underestimates total uncertainty (Krzyztofowicz, 2001)

Case study: 21 December 2002

Catchment

- River Mole, 142 km², S.E. England
- Rainfall forecast
 - STEPS 100 member ensemble (no NWP)
 - 15 minute accumulation
 - range 6 hours
- > River flow forecast
 - Probability Distributed Model (PDM)
 - Calibrated using radar data
 - Forecasts from 3 time origins
 - Forecast range extended using zero rainfall

Probability Distributed Model

Probability Flood Forecasts from radar rainfall nowcast ensembles

CEH/Met Office/Australian Bureau of Meteorology collaboration

August 2002 European floods

