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Desirable Characteristics of a Hydrologic Model …

State/Output Predictions are “Accurate” (unbiased)

State/Output Predictions are “Precise” (minimal uncertainty)

Input-State-Output behavior is “Consistent” with the 
available data

Conceptual structure is “Consistent” with our perceptions 
(understanding) of the physical/behavioral structure of the 
system



An NSF Science and Technology CenterSAHRA
All slides property of Hoshin Gupta, Department of Hydrology & Water Resources, The University of Arizona, Tucson, AZ, 85721:  Do not use without permission

… Operations Point of View

NWS/OHD/HL Hydrologic Modeling Priorities

… Verification of 
deterministic and 

probabilistic river forecasts. 

… Quantification of 
uncertainty in river forecasts 

including ensemble methods. 
…

Pictures by ©E.C.Draper/1998



An NSF Science and Technology CenterSAHRA
All slides property of Hoshin Gupta, Department of Hydrology & Water Resources, The University of Arizona, Tucson, AZ, 85721:  Do not use without permission

… Operational Needs

To be able to handle risk in decision making

To be able to update forecasts as new 
information becomes available
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Uncertainty estimate of streamflow prediction
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Updated estimate of streamflow uncertainty
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Issues in Uncertainty Estimation
…      Systems Point of View …

Uncertainties exist in:

U(t) f

Model

E(t)

X0

Forcing

State

Output
Y(t)

Forcing

Model Identification

State

Output Measurements

Merging Data with Models:
Multiple Sources and Types of Information
Data becomes available incrementally
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Model Forcing (Precipitation) Uncertainty

Sources of Uncertainty:

Detection
Measurement (Spacing, Support, Scale)
Coverage
Aggregation/disaggregation

Sources of Data:

Gages
Radar 
Satellite (indirect, time-space scale)
Models*
Combinations / Other
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Precipitation Gages

Accuracy of Catch 
Sparsity of Coverage

Representativeness of Location

Basin-scale areal estimates obtained from “point” measurements
by aggregation (e.g., Thiessen polygons)
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Ground-based Radar
Indirect measurement

Coverage blocked by mountains etc
Measures precipitation “in the air”

3000 m AGL

Coverage of the WSR-88D network over the US

Maddox, et. al.  Weather and Forecasting, 2002.
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Ground-based Radar
Indirect measurement

Coverage blocked by mountains etc
Measures precipitation “in the air”

2000 m AGL

Coverage of the WSR-88D network over the US

Maddox, et. al.  Weather and Forecasting, 2002.
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Ground-based Radar
Indirect measurement

Coverage blocked by mountains etc
Measures precipitation “in the air”

1000 m AGL

Coverage of the WSR-88D network over the US

Maddox, et. al.  Weather and Forecasting, 2002.
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Space-based Remote Sensing
Geostationary

(GOES, Meteosat …)
35,000 km

Orbiting
(TRMM, DMSP 

400 km

Indirect measurement
Time-space scale

Measures “in-the-air”
Parallax problem

GOES-9
(135W)

hc
Earth

GOES-8
(75W)

Tb8 Tb9

GOES-8 Cloud-Top
Brightness Temperature GOES-9 Cloud-Top

Brightness Temperature

∆X

RR

Ground-Based Radar Rainfall

(Pixel Size = 2 km)
e.g., Sorooshian, Hsu, Gao etc (UC Irvine)
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Model & Combination Approaches
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e.g., Sorooshian, Hsu, Gao etc (UC Irvine)
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Model Identification Uncertainty

Multiple Plausible Descriptions:

Conceptualization
• Control Volume/Domain
• Inputs, State Variables, Outputs
• Feedbacks
• Components to be included/ignored

Mathematical Representation
• Structural Equations
• Deterministic / Stochastic

System Invariants
• Parameter Values
• Constants
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… and the related “State” Uncertainty

System “Wetness”:

Conceptualization / Definition
• What is soil moisture anyway?  [ dS/dt = I – O ]
• Dimensionality (low-D representation of infinite-D)
• Scale

Observability
• Is there a high enough correlation between the 
“modeled state variable” and the observable quantity?
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Examples – Different vertical representations of “Soil Moisture” 
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Example -- Sacramento Model (NWS) representation of “Soil Moisture”
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Example – Spatially Distributed Model representation of “Soil Moisture” 

?-D 
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Output Measurement Uncertainty

Observations:

Evapotranspiration
Soil Moisture
Streamflow

Measurement Problems:

Detection
Representativeness
Scale
Measurement Error (Bias, Heteroscedasticity)
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The fundamental basis for combining 
different types of uncertain

information is given by Bayes Law

Thomas Bayes

1702-1761, England

Calligraphy by Jakusho Kwong Roshi
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Implementation of Bayes Law
By the Ensemble Approach

Prediction (Propagating the Uncertainty)
Data Assimilation (Updating the Uncertainty)
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Prediction (Propagating the Uncertainty) …

E(t)

U(t) f

X0

Y(t)

State
(Prognostic Variables)

Output
(Diagnostic Variables)

Forcing
(Input Variables)

Model
(Prognostic Variables)

Conceptualization
Mathematical Representation (Equations)

System Invariants (Parameters)
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U(t) f

Model
(Prognostic Variables)

E(t)

X0

Forcing
(Input Variables)

State
(Prognostic Variables)

Conceptualization
Mathematical Representation (Equations)

System Invariants (Parameters)

Output
(Diagnostic Variables)

Y(t)
P(Ut)

P(M)

P(X0)

Use Ensembles that sample the space of the uncertainty …
And propagate the samples

into the output space
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Data Assimilation (Updating the Uncertainty) …

Uncertain Observations:
Evapotranspiration
Soil Moisture
Streamflow

P(Ot)

E(t)

U(t) f

X0

Y(t)

State
(Prognostic Variables)

P(Yt)
Output
(Diagnostic
Variables)

Forcing
(Inputs)

Model
(Prognostic Variables) Uncertain Predictions:

Evapotranspiration
Soil Moisture
Streamflow
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Data Assimilation (Updating the Uncertainty) …

Observations:
Evapotranspiration
Soil Moisture
Streamflow

E(t)

U(t) f

X0

Y(t)

State
(Prognostic Variables)

P(Ot)

P(Yt)
Output
(Diagnostic
Variables)

Forcing
(Inputs)

Model
(Prognostic Variables)

Updating Rule
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Data Assimilation (Updating the Uncertainty) …

Observations:
Evapotranspiration
Soil Moisture
Streamflow

U(t) f
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Updating Rule

Output
(Diagnostic
Variables)
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Linear Updating Rules …

EnKF -- Ensemble Kalman Filter:
Evensen, 1994 // Evensen and van Leeuwen, 1996

Xi(+) = Xi(-) + K [ Oi – M{Xi(-)} ] 

Where the gain  “K”  depends on the cross covariance of 
the forecast Y = M{X} with 
the unknown X to be estimated

Note:
The unknown is typically chosen to be the (uncertain) state variable
But could also be the (uncertain) model and/or (uncertain) forcing

Characteristics of EnKF (McLaughlin, Waginingen Workshop, Sept 2001)

• Well-suited for real time applications +
• Provides information on estimation accuracy +
• Flexible, modular, can accommodate wide range of model error descriptions +
• No need for adjoint model, linearizations or other model approximations +
• Robust and easy to use +

• Update assumes states are jointly normal –
• Can be computationally demanding –
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Applications of EnKF in Hydrology

State Estimation:
• Soil moisture estimation

Reichle, McLaughlin, Entekhabi, 2002

• Coastal areas modeling
Madsen, Canizares, 1999

• Others …

Joint State-Parameter Estimation:
• Simultaneous Optimization and Data Assimilation:

Vrugt, Gupta, Diks, Bouten, Verstraten, 2004 (in press)

• Dual State-Parameter Estimation
Moradkhani, Sorooshian, Gupta, Houser, 2004 (to be submitted)
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Non-Linear Updating Rules …

Bayesian Non-Linear Updating using Ensembles:

• RSA (Regional Sensitivity Analysis) - behavioral/non-behavioral thresholds
Hornberger and Spear, 1981

• GLUE (Generalized Uncertainty Analysis)
Binley & Beven, 1991

• BaRE2 (Bayesian Recursive Estimation)
Thiemann, Trossett, Gupta, Sorooshian, 2001 // Misirli, Gupta, Thiemann, Sorooshian, 2003

• DyNIA (Dynamic Identifiability Analysis)
Wagener, McIntyre, Less, Wheater, Gupta, 2003

• SCEM (Shuffled Complex Evolution Metropolis)
Vrugt, Gupta, Bouten, Sorooshian, 2003

• MOSCEM (Multi-objective SCEM)
Vrugt, Gupta, Bastidas, Bouten, Sorooshian, 2003

• SODA (Simultaneous Optimization and Data Assimilation: EnKF + SCEM)
Vrugt, Gupta, Diks, Bouten, Verstraten, 2004

• BMA (Bayesian Model Averaging)
Neuman, 2003

• Other …
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Major areas of research interest 
today
are

Model Structural Uncertainty
&

Forcing Uncertainty
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So far as the laws of mathematics 
refer to reality, they are not certain.  

And so far as they are certain, they 
do not refer to reality.

Albert Einstein
Geometry & Experience

Calligraphy by Jakusho Kwong Roshi
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