Issues in Uncertainty Estimation for Hydrologic Modeling

(Use of Ensemble Approaches)

Hoshin Gupta Adjunct Professor Hydrology & Water Resources The University of Arizona Tucson, Arizona

SAHRA

Calligraphy by Jakusho Kwong Roshi

An NSF Science and Technology Center

Desirable Characteristics of a Hydrologic Model ...

- State/Output Predictions are "Accurate" (unbiased)
- State/Output Predictions are "Precise" (minimal uncertainty)
- Input-State-Output behavior is "Consistent" with the available data
- Conceptual structure is "Consistent" with our perceptions (understanding) of the physical/behavioral structure of the system

... Operations Point of View

NWS/OHD/HL Hydrologic Modeling Priorities

... Verification of deterministic and <u>probabilistic</u> river forecasts.

... Quantification of <u>uncertainty</u> in river forecasts including <u>ensemble</u> methods.

SAHRA

Pictures by ©E.C.Draper/1998

An NSF Science and Technology Center

... Operational Needs

To be able to handle <u>risk</u> in decision making

To be able to <u>update forecasts</u> as new information becomes available

SAHRA

An NSF Science and Technology Center

Uncertainty estimate of streamflow prediction

SAHRA

An NSF Science and Technology Center

Updated estimate of streamflow uncertainty

SAHRA

Issues in Uncertainty Estimation ... Systems Point of View ...

Uncertainties exist in:

Forcing

Model Identification

State

Output Measurements

Merging Data with Models:

SAHRA

Multiple Sources and Types of Information Data becomes available incrementally

An NSF Science and Technology Center

Model Forcing (Precipitation) Uncertainty

Sources of Uncertainty:

Detection Measurement (Spacing, Support, Scale) Coverage Aggregation/disaggregation

Sources of Data:

Gages Radar Satellite (indirect, time-space scale) *Models** Combinations / Other

SAHRA

Accuracy of <u>Catch</u> Sparsity of <u>Coverage</u> Representativeness of <u>Location</u>

Basin-scale areal estimates obtained from "point" measurements by aggregation (e.g., Thiessen polygons)

An NSF Science and Technology Center

Ground-based Radar

Tindirect measurement Coverage blocked by mountains etc Measures precipitation "in the air"

Coverage of the WSR-88D network over the US

SAHRA Maddox, et. al. Weather and Forecasting, 2002.

Ground-based Radar

Toverage blocked by mountains etc Measures precipitation "in the air"

Coverage of the WSR-88D network over the US

SAHRA Maddox, et. al. Weather and Forecasting, 2002.

Ground-based Radar

Indirect measurement Coverage blocked by mountains etc Measures precipitation "in the air"

Coverage of the WSR-88D network over the US

SAHRA Maddox, et. al. Weather and Forecasting, 2002.

Space-based Remote Sensing

Indirect measurement Time-space scale Measures "in-the-air" Parallax problem

Model & Combination Approaches

Model Identification Uncertainty

Multiple Plausible Descriptions:

Conceptualization

- Control Volume/Domain
- Inputs, State Variables, Outputs
- Feedbacks
- Components to be included/ignored

Mathematical Representation

- Structural Equations
- Deterministic / Stochastic

System Invariants

- Parameter Values
- Constants

SAHR

An NSF Science and Technology Center

... and the related "State" Uncertainty

System "Wetness":

Conceptualization / Definition

- What is soil moisture anyway? [dS/dt = I O]
- Dimensionality (low-D representation of infinite-D)
- Scale

Observability

 Is there a high enough correlation between the "modeled state variable" and the observable quantity?

Examples - Different vertical representations of "Soil Moisture"

SAHRA

An NSF Science and Technology Center

Example -- Sacramento Model (NWS) representation of "Soil Moisture"

Example - Spatially Distributed Model representation of "Soil Moisture"

SAHRA

An NSF Science and Technology Center

Output Measurement Uncertainty

Observations:

Evapotranspiration Soil Moisture Streamflow

Measurement Problems:

Detection Representativeness Scale Measurement Error (Bias, Heteroscedasticity)

An NSF Science and Technology Center

Thomas Bayes 1702-1761, England

The fundamental basis for combining different types of <u>uncertain</u> <u>information</u> is given by Bayes Law

SAHRA

Calligraphy by Jakusho Kwong Roshi

An NSF Science and Technology Center

Implementation of Bayes Law By the Ensemble Approach

Prediction (Propagating the Uncertainty) Data Assimilation (Updating the Uncertainty)

An NSF Science and Technology Center

Prediction (Propagating the Uncertainty) ...

SAHRA

An NSF Science and Technology Center

Use Ensembles that sample the space of the uncertainty ...

All slides property of Hoshin Gupta, Department of Hydrology & Water Resources, The University of Arizona, Tucson, AZ, 85721: Do not use without permission

An NSF Science and Technology Center

Data Assimilation (Updating the Uncertainty) ...

SAHRA

An NSF Science and Technology Center

Data Assimilation (Updating the Uncertainty) ...

SAHRA

Data Assimilation (Updating the Uncertainty) ...

SAHRA

An NSF Science and Technology Center All slides property of Hoshin Gupta, Department of Hydrology & Water Resources, The University of Arizona, Tucson, AZ, 85721: Do not use without permission

Linear Updating Rules ...

EnKF -- Ensemble Kalman Filter:

Evensen, 1994 // Evensen and van Leeuwen, 1996

 $X^{i}(+) = X^{i}(-) + K [O^{i} - M\{X^{i}(-)\}]$

Where the gain "K" depends on the <u>cross covariance</u> of the forecast Y = M{X} with the unknown X to be estimated

Note:

The unknown is typically chosen to be the (uncertain) state variable But could also be the (uncertain) model and/or (uncertain) forcing

Characteristics of EnKF (McLaughlin, Waginingen Workshop, Sept 2001)

- Well-suited for real time applications +
- Provides information on estimation accuracy +
- Flexible, modular, can accommodate wide range of model error descriptions m +
- No need for adjoint model, linearizations or other model approximations m +
- Robust and easy to use +
- Update assumes states are jointly normal –
- Can be computationally demanding –

SAHRA

An NSF Science and Technology Center

Applications of EnKF in Hydrology

State Estimation:

- Soil moisture estimation Reichle, McLaughlin, Entekhabi, 2002
- Coastal areas modeling Madsen, Canizares, 1999
- Others ...

Joint State-Parameter Estimation:

- Simultaneous Optimization and Data Assimilation: Vrugt, Gupta, Diks, Bouten, Verstraten, 2004 (in press)
- Dual State-Parameter Estimation

Moradkhani, Sorooshian, Gupta, Houser, 2004 (to be submitted)

SAHRA

Bayesian Non-Linear Updating using Ensembles:

- RSA (Regional Sensitivity Analysis) behavioral/non-behavioral thresholds Hornberger and Spear, 1981
- GLUE (Generalized Uncertainty Analysis) Binley & Beven, 1991
- BaRE2 (Bayesian Recursive Estimation) Thiemann, Trossett, Gupta, Sorooshian, 2001 // Misirli, Gupta, Thiemann, Sorooshian, 2003
- DyNIA (Dynamic Identifiability Analysis) Wagener, McIntyre, Less, Wheater, Gupta, 2003
- SCEM (Shuffled Complex Evolution Metropolis) Vrugt, Gupta, Bouten, Sorooshian, 2003
- MOSCEM (Multi-objective SCEM) Vrugt, Gupta, Bastidas, Bouten, Sorooshian, 2003
- SODA (Simultaneous Optimization and Data Assimilation: EnKF + SCEM) Vrugt, Gupta, Diks, Bouten, Verstraten, 2004
- BMA (Bayesian Model Averaging) Neuman, 2003
- Other ...

SAHRA

An NSF Science and Technology Center

Major areas of research interest today are

Model Structural Uncertainty & Forcing Uncertainty

An NSF Science and Technology Center

So far as the laws of mathematics refer to reality, they are not certain. And so far as they are certain, they do not refer to reality.

Albert Einstein Geometry & Experience

An NSF Science and Technology Center