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Talk Overview

» Ensemble Performance for Precipitation
Biases, Event Discrimination
Regional Assessment

» Calibration of Ensemble Output

» Analysis Uncertainty

» Fields Needed by Hydro. Runoff Model

What remains to be done?



RMSE Deposition

Murphy (1988)
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Brier Score Decomposition
Murphy (1973)
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Reliability for Old T159
Cool Season 10 mm/day
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RPSS > 0.5 are mainly located along the Pacific Coast, and the
windward slopes of Sierra Nevada Mountains and Mogollon Rim of
the central Arizona.

Spatial Correlations
RPSS and Precipitation: ~0. 60
RPSS and Gauge Density: ~0.30

(Yuan et al. 2004, in progress)
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“L” shape of RH denotes large wet bias
Wet bias reflected in Reliability Curves
1200 UTC shows stronger wet bias!

(Yuan et al. 2004, in progress)
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Personal Anecdotal Observation

 Ensemble forecast systems, both global
and limit-area, seem to have very similar
error characteristics for precipitation

=~ Wet conditional bias for 24 h thresholds of
50 mm and lower

— Under dispersion



20

H10

Il
a

g0
AL
&0

40
30
20

1 /A
:\Bf\g " —ag C..2do®H

+5 Day T255 +5 Day T319
Hurricane Georges - Day 5 Forecast




30 JAN 99: Pr> 5

+5 Day T255 +5 Day T319
Wintertime Severe Thunderstorm Outbreak



Forecast Variations

 Skillful ensemble forecast systems might
always yield a few “busts”

What are sensitivities of user hydro user
community and how do they deal with
this situation?



Forecast Discrimination

 How well do ensembles discern
precipitation events if biases are
removed/ignored?



EPS ROC Areéas ftor

Summer-Wwinter
20 mm Threshold, Model Grid
Summer precipitation is

T255 EPS
tougher to discern

0.9 P
0.8 ‘ .

1.0

Small sub-grid scale
Intermittency

? m
0.5
1 2 3 4 5 6 7 8 9 10

Fest Day Weak synoptic forcing



24 h ROC Areas for 12 km RSM

Outstanding ability
to discriminate
precipitation events

ROC areas ~0.90

Local regions can show
better performance
e.g. Sierra Nevada
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(Yuan et al. 2004, in progress)



RSM Verification for River Basins
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Regional Variations in 12 km

RSM Skill

Great Basin
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Regional Variations in 12 km
RSM Skill
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12 km RSM ROC Central Valley
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Optimal Potential Economic Value (PEYV)
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Calibration Questions

e Calibration of EPS Ensemble Output
by Artificial Neural Networks (ANN)



Brier Skill Score
(4 Summers---DCA, OKC, FL, PNW)

e SKkill Increases for

—>=NET 1mm — —EPS 1mm
< NET 10mm EPS 10mm

—O>—NET 25mm — —EPS 25mm 1, 10 and 25 mm
but not 50 mm

* Largest Improvement
Early in Forecast

Fcst Day



Obs Prob

Attributes Diagram Day 2
(4 Summers---DCA, OKC, FL, PNW)
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e Excellent Calibration
Every Year-Season

 No High Probabilities
(e.g. No Probs > 90%
for 10 mm at D+2)

* NET not as Sharp
Note Differences in
Forecast Frequencies
(logarithmic scale)



Summer Brier Decomposition

Where Does Improvement Come?

10 mm * REL (Reliability)
—Z—E:; :EI - ’E:; ';': NET Increases Skill

UNC .088 Through D+5

 RES (Resolution)
Slight Increase (@ D+1

Fcst Day



Average Regional SKkill

(Averaged over all forecast projections)




“General” Conclusions

» Calibration of Only QPF Output

Reliability
Resolution




Somewhat Related Questions

How should ensemble output be
calibrated prior to input into
hydrological models?

In what form (state vector for
single forecast or state “matrix”
for entire ensemble) should
forecast fields from ensembles be
input into hydro models?



Inclusion of Analysis
Uncertainty in Verification

Thorough' Verification...

Should include estimate of observational or
analyses uncertainty

Inclusion can lead to markedly different

- values for accuracy measures

- conclusions

Rainfall marked by LARGE uncertainty
QPE ditferences can be comparable to spread
at 24-48 h fer QPF in localized regions!



Uncertainty in Verification Analyses

The NCEP precipitation analyses
Resolution| Data source | QC [Interval|{Time (UTC)mask|Gauge

RFC8 |[1/8™"(14km)| Radar+Gauge|Yes| 24 h 1200 Yes |7~8000

RFC4 4 km Gauge only |No| 24 h 1200 Yes |7~8000

Stage4d| 4km |Radar+Gauge|Yes|6 h/24 h|0000&1200( No | 3000
QC: Quality Control done at RFCs

+ Accumulated 24-h precipitation for 1200 UTC 8 Nov-9 Nov, 2002
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Different Veritying Analyses

Brier skill score

NDJFM 2002-03
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Yuan et al. (2004, 1n progress)




Analysis-Observational
Uncertainty

. “What is the impact from.uncertainty
associate with other variables that might
be needed as input by hydrological
runoff models?



Driving Hydro Runotf Models
with EPS/Ensemble Output

 QPF/NWP Forecasts are NOW Sufficiently
Accurate to Use as Forcing for Predictive
Hydrological Runoff Models...may require

DOWNSCALING
Time-Space Scales

* Need to Verity Additional Atmospheric
Parameters Not Commonly Examined.

SFC Fluxes, Radiation, H,O Vapor, Cloud



Hydrologic Models

Rainfall Excess Model Dynamic Infiltration Model

_ (KINEROS)
. .Rﬁ_mfa_" . Overland
' Flow
Plane

Runoff

Infiltration Component
Removed from Rainfall

 Infiltration
OPEH il

Channel |
Element

KINEROS Impervioys Surface

|- Infiltration into Soil

Some Basically Need Precipitation from
Atmospheric Ensembles



Hydrologic Models

initial state updating

simulated state

t t
emperature = observed state ?

wind
atmospherie water
precipitation surface water

subsurface water

field characteristics

calibration (from Marchand 1999)

Others Require Atmospheric Input Fields of
Precipitation (amount, type, intensity)
Wind, T, Q, Clouds, Fluxes, Radiation, BC’s




Driving Hydro Runotf Models
with EPS/Ensemble Output

 What 1s Ensemble Performance for “Other”
Parameters Needed by Hydro Models?

Fluxes, Radiation, Water Vapor, Cloud

e How Well Are These Fields Observed?
What is the uncertainty?

e How Does 1t Affect Estimates of Skill?
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Runoft is Sensitive to
Precipitation Intensity

Intermittency Issue of
Heavy Precipitation

Better Documentation
and Understanding of
Ensemble Variances



Feature Based Verification
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Moncrieff and collaborators (2002 ongoing)

a) 10 days of observation
Carbone et al (2002)



Feature Based Verification

X (km)

c) A 5-day resolved-convection 'ensemble’

Moncrieff and collaborators (2002)

a) 10 days of observation

Mucho Better Climate! Carbone et al (2002)
Simulates Aspect of Feature



Feature Based Verification

 Heavy Precipitation/Flash Flooding is
Often Associated with Features Like:

— Quasi-Stationary Convection

— “Training” Convection

— Topographic Interactions

— Warm Clouds

— Land Falling Hurricanes, Tropical Systems
— Warm Rain over Snow

 How well do ensemble systems perform?



Closing Thoughts

* Data/Com Requirements

— Analyses/Observations: (atmospheric
and hydrologic) at requisite time/space
scales with uncertainty estimates

— Frequent, full resolution ensemble
fields for parameters of relevance to
hydroelogical models for calibration of
ensemble and hydrological models

* What does Hydro Community need?
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