Meteorological Service of Canada: Ensemble Prediction System and Hydrologic Coupling R&D

Gilbert Brunet Recherche en Prévision Numérique (RPN) Meteorological Research Branch (MRB) Meteorological Service of Canada (MSC) Environment Canada Québec, Canada

Monday, 8 March 2004, Reading, UK

Global Environmental Multiscale Forecasting & Modelling System 2004-2014

S

Uniform resolution Variable resolution Hydrostatic Nonhydrostatic Global Limited-area Distributed memory

3D Var Data Assimilation 4D Var Data Assimilation Ensemble Kalman Filter Operational forecast Emergency response Volcanic ash Air quality Hydrologic coupling Stratospheric ozone Wave model Oceanic coupling

Global EPS

Thanks to Dr. P. Houtekamer,L. Lefaivre, G. Pellerin and L. Wilson

16 members (Multi-model: SEF T149 and GEM 1.2°)
Perturbed analyses obtained from perturbed assimilation cycles (using OI scheme)
Different model options used for both models
Forecasts done once a day up to 10 days at

•Forecasts done once a day up to 10 days at 00 UTC

Canada

Verification

Environment Canada

Verification comparison between ECMWF, NCEP and CMC EPS

The area under the relative operating characteristic curve (ROCA) measures the ability of a system to discriminate between hits and false alarms.

The ROCA skill score (ROCASS) is defined as:

ROCASS = 2*ROCA - 1

(ROCASS tends to 1 for a skilful system)

From Buizza, Houtekamer, Toth, et al , 2003

Short and long range plan for EPS

- Development of 7 day forecasts ٠
- **Development of week 2 forecasts** ٠
- Probabilistic forecasts for specialized users ٠
- High impact weather forecasts ٠
- 2004: •
 - New data assimilation scheme (Ensemble Kalman Filter)
 - Forecasts run at 00Z and 12Z

 - Lead time up to 15 days
 Increased number of members
- Long range R&D plan:
 - Unified EPS with GEM model with a focus on physics perturbations
 - Short-range EPS system
 - Seamless EPS from short-range to seasonal time scale:

* Validation and products could benefit from sharing expertise

* Perturbation methodologies are different (different sources of predictability) Environnement

Environment Canada

: 0-P6hr

Lat-lon: (90S, 180W) (90N, 180E)

Type Region : Monde

Stat.

E-T m_ua02052400_02060212_000_plh43 (20

BIAIS m up02052400_02060212_000_plb43

Agreement between the EnKF and the 3D-VAR

3D-VAR is in blue. EnKF is in red.

For winds and temperature the EnKF and the 3D-VAR have remarkably similar innovation statistics.

For humidity the EnKF has a bigger bias but a smaller rms error.

Generally the scores are very similar. It would appear that the impact of the 4D aspect is small.

NCEP Collaboration - EPS

- Data exchange (standardized outputs)
 - Calibration of mean and variance of ensembles
 - Debiasing each model with a common methodology
- Common verification tools
- Moving to similar looking products
 - Probabilistic products for high impact weather
 - Products based on combined ensembles
 - Eventually, joint products and ensemble

Coupling for the St-Lawrence and Great Lakes Regions at RPN: Ocean, Hydrodynamic, Hydrologic, Ice and Atmospheric Models, (radars). Leader: Dr. R. Benoit, P. Pellerin, A. Pietroniro and Dr. H. Ritchie

Collaborators:

-RPN (MSC) -NHRI, Ontario Region (MSC) -IREQ (Hydro-Québec) -IML (DFO) -National Water Research Institute (EC)

Coupling for the St-Lawrence: Ocean, Hydrodynamic, Hydrologic and Atmospheric Models (radars).

Canada Environment

T

Impact of a Two Way Coupling between an Atmospheric and an Ocean-Ice Model over the Gulf of St. Lawrence. Pellerin, Ritchie, Desjardins, Saucier and Roy, in MWR, 2003

Each: 600 seconds

Ocean

~4 km timestep=50s

Atmosphere

Coupler

IR and Vis flux, Humidity, Pressure, Winds Precipitation.

5 km timestep=300s

2 way Coupling - 1 way Coupling Surface temperature V 00Z 15

Environnement Environment Canada Canada

SW Ontario Watersheds

20	SPD/ARMST MI	
30	ERAMOSA/GUEL	
40	GUELPH	
50	W. MONTROSE	
60	ELMIRA	
70	CONEST/DRAYT	
80	GRND/MARSVIL	
90	GRND/GALT	

110	@ HOCKLEY	
120	NR. BAXTER	
200	WALKERTON	
210	HANOVER	
220	PT ELGIN	
300	AB. WINGHAM	
310	BL. WINGHAM	
320	BELGRAVE	

420 THAMESFOR 430 THORNDALE 440 EALING Hydrological model used and validated to do forecasts. Radar Observations

Intario

Objective:

To try to understand a high resolution atmospheric forecast and thus to improve the use of the hydrological forecasts.

- A series of experiments with atmospheric models (MC2, GEM, ...) coupled with hydrological models (WATFLOOD, HYDROTEL, ...).
- With radar or atmospheric model inputs, WATFLOOD outputs compare favorably well with measured streamflow for southern Ontario (Benoit et al., MWR 2000).
- The study being extended to other basins in collaboration with hydroelectricity industries.

Example: Hydrological Coupling with MC2 at different resolutions: (35, 10 and 3km)

Atmospheric Model

MC2 <u>06h</u> 30h Non-hydrostatic Full microphysics Limited Area

Grids

Hydrologic Model

- Watflood
- Distributed, physically based.

SW Ontario Watersheds

<u>Plan for the Hydrological-Surface Coupling</u> <u>To create a synergy for research and operations</u>

References EPS

- Pellerin, G., L. Lefaivre, P. Houtekamer, and C.Girard, 2004: Increasing the horizontal resolution of ensemble forecasts at CMC. Nonlinear Processes in Geophysics, in press.
- Houtekamer, P.L., L. Lefaivre, J. Derome, H. Ritchie, and H.L. Mitchell, 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124, 1225-1242.
- Buizza, R., P.L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, Y. Zhu, 2002: Assessment of the status of global ensemble prediction. ECMWF seminar on predictability of weather and climate. 9-13 September 2002.

REFERENCES HYDROLOGIC COUPLING

- The Canadian Coupled Atmospheric and Hydrologic Prediction Long Range Plan coming out in Spring 2004.
- Benoit, R., C. Schär, P. Binder, S. Chamberland, H.C. Davies, M. Desgagné, C. Girard, C. Keil, N. Kouwen, D. Lüthi, D. Maric, E. Müller, P. Pellerin, J. Schmidli, F. Schubiger. C. Schwierz, M. Sprenger, A. Walser, S. Willemse, W. Yu, and E. Zala, 2002: <u>The real-time ultrafinescale forecast support during the special observing period of the MAP.</u> Bull. Amer. Meteor. Soc., 83, 1, 85–109.
- Benoit, R., P. Pellerin, N. Kouwen, H. Ritchie, N. Donaldson, P. Joe and R.Soulis 2000: On the Use of Coupled Atmospheric and Hydrologic Models at Regional Scale. Mon. Wea. Rev., 128, 1681-1706.
- Pellerin, P., H. Ritchie, S. Desjardins, F. Saucier and Roy 2004: Impact of a Two Way Coupling between an Atmospheric and an Ocean-Ice Model over the Gulf of St. Lawrence. Mon. Wea. Rev.

Conclusion

- Expectations regarding environmental prediction in Canada increased dramatically and the market for weather and hydrological forecast products is segmented (e.g., farming community, municipalities, watershed authorities, etc.).
- Major trends in this decade included a shift away from measurements and the emerging view that advances in remote sensing and modeling could enhance significantly monitoring.
- In the modeling world, key developments included the integration of weather prediction models with land surface and hydrological models to produce soil moisture estimates, streamflow estimates and forecasts, etc.
- New initiative: Hydrometeorology and Arctic Laboratory (HAL) within the Meteorological Service of Canada.
- HAL will be co-located with the National Water Research Institute in Saskatoon
- EPS is needed for added value

