Ensemble Optimization for Hydroelectric Operations

By Charles D. D. Howard

info@cddhoward.com

Powell & Lois Rivers HYDROPS Annual Storage Model

Version 2.0.2 February, 2000

- State of the local day

Charles Howard & Associates Ltd. Professional Water Resources Engineers

Forecast Model

File Options Help

Powell River BC Basin

Average Annual Inflow (cfs)

The Application

The paper mill's electricity requirements normally exceed the capability of the two hydroelectric plants. The objective is to minimize the cost of electricity purchases.

A key constraint in operating the dams is to guarantee minimum generation of 20 Mw at all times.

Since 1989 a decision support system has been used for optimizing electricity purchase decisions.

The decision support system consists of:

- a hydrologic ensemble forecast model,
- an ensemble optimization reservoir model,
- an generator optimum loading model.

The inputs are weekly hydrologic ensemble forecasts and seasonal energy prices.

The one year time horizon reservoir operations model is a non-linear optimization.

The recommendation is the **specific** optimum power generation for this week.

The result is the week by week probability distributions for future power and reservoir states.

Operation Before Ensemble Optimization

Operation Before Ensemble Optimization

Hydrologic model outputs: daily inflow hydrographs

Stochastic Runoff Forecast Model

Conditional probability of cumulative inflow

Boundil + Lois Divor C Start Division - Divisions/9911P

Starting Date: May 13, 2001

Ending Date: May 11, 2002

IB-E-D4 DM

Reliability of minimum generation

Truncate the hydrologic ensemble forecast at an appropriate probability level.

For example, the recommended generation may go to the lower bound (20 Mw minimum generation) in at least one of the hydrologic sequences provided in the input.

The driest sequence controls the reliability.

Powell & Lois River Seasonal Operations : Recommended Powerhouse Releases

The Annual Storage Model has successfully optimized powerhouse releases for the planning horizon.

Next Week

NEXI WEEK

Recommended average releases (cms) and the corresponding average generation (MW) for the week starting February 26, 2004:

Powerhouse	Discharge (cms)	Generation (MW)		
Powell Plant	118.00	46.6		
Lois Plant	40.00	39.3		
	158.00	85.9		

Next Year

Expected value of total generation (MWh) for the planning horizon from February 26, 2004 to February 23, 2005 :

Powerhouse	Generation (MWh)		
Powell Plant	402,176		
Lois Plant	339,956		
Total Generation	742,132		

Operation After Ensemble Optimization

Hydrologic Ensemble Optimization

Actual Hydroelectric Benefits.

	1989	1990	1991	GwH/Year
Actual operation with software	269	392	265	295
Theoretical optimum	268	309	334	304
Rule Curve Operation	263	289	313	288

2-percent improvement over Rule Curve was experienced. Payback was less than one year

Up to 5-percent improvement over Rule Curve is possible if future operations follow recommendations more closely.

Hydrologic Ensemble Optimization

Remaining Potential Hydroelectric Benefits.

	1989	1990	1991	1992	1993	1994	1995	1996	Totals
Actual operation with software	269	292	325	302	242	307	344	330	2411
Theoretical optimum	268	309	334	317	253	303	363	334	2481

Overall possible improvement of 3-percent remains if the optimal recommendations can be followed more closely in practice.

This comparison provides a performance measure for ongoing operations

Example Decision Support System

Thank you for your attention

info@cddhoward.com