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ABSTRACT

The relative merits of ocean data assimilation are discussed in the context of state estimation and creation of ocean initial
conditions for seasonal forecasts. The discussion is based on results from the ocean analysis components used in the
different ECMWF seasonal forecast systems.

Uncertainty in time evolution of the wind stress results in a large uncertainty in the interannual variability of the upper
ocean. It is shown that data assimilation is effective in reducing the level of uncertainty, and that the initialization of ocean
by means of ocean data assimilation has beneficial impacts on the skill of seasonal forecasts.

Results show that data assimilation mainly corrects for systematic error, even though the assimilation method is not
designed to do so. The presence of systematic error can be damaging for the representation of interannual variability in
data-sparse areas. Univariate assimilation of temperature data can have a detrimental effect on the equatorial currents and
salinity. These considerations have been taken into account when designing the ocean data assimilation procedure for the
seasonal forecast system currently operational at ECMWF (System 2).

1 Introduction

From the atmospheric point of view, seasonal forecasting can be considered a boundary condition problem,
which is associated to the predictability of the second kind: the forcing provided by the lower boundary con-
ditions (sea surface temperature (SST), soil moisture) changes the population of the atmospheric attractor, and
therefore the probability of occurrence of weather events (Palmer 1993, Corti 1994).

The prediction of the boundary conditions (SST, soil moisture) at seasonal timescales can be considered an
initial value problem. The potential predictability arises from the longer memory associated with the higher
heat capacity of water, and from the degree of predictability of ocean dynamics. The dynamic memory is
particularly important in the tropical oceans, where the correct initialization of the upper thermal structure is
considered instrumental in the prediction of the tropical SST at seasonal timescales with dynamical models
(Palmer and Anderson, 1994).

The seasonal forecasting system at ECWMF is based on a coupled ocean-atmosphere general circulation model
that predicts both the lower boundary conditions (namely SSTs) and their impact on the atmospheric circulation.
This approach is often called a one-tier approach. The probabilistic nature of seasonal forecasting is addressed
by performing an ensemble of integrations with the aim of sampling the atmospheric probability density func-
tion (PDF). Because of deficiencies in the oceanic and atmospheric models the state of the coupled model drifts
with forecast lead time. No flux correction is applied to correct the drift during the coupled model integrations.
Instead, a set of historical hindcasts is performed to provide an estimate of the model climatological PDF, which
is used for a-posteriori calibration of the model results (Stockdale 1998). In a one-tier approach, forecasting
the SST using a fully-coupled model is essentially an initial value problem since predictability largely resides
in information contained in the initial state of the ocean. This is especially true in the tropical Pacific.

The quality of seasonal forecasts is determined by the the various components of the system (the ocean initial-
ization, the coupled model, the ensemble generation and the calibration strategy), which are closely interrelated.
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The interdependence of the different components becomes clear when considering the calibration procedure.
The a-posteriori calibration of model output requires an estimate of the model climatology, which is obtained
by performing a series of coupled hindcasts during some historical period (typically 10-15 years). A historical
record of hindcasts is also needed for skill assessment. Ocean initial conditions spanning the chosen calibration
period are then required, which is equivalent to a historical ocean ”reanalysis”. The interannual variability
represented by ocean reanalysis will have an impact on both the calibration and on the assessment of the skill.
Because of the large impact on the forecast, the uncertainty in the ocean initial conditions should be considered
in the ensemble generation (Vialardet al. 2003).

The skill of the seasonal forecasts is often used to gauge the goodness of the ocean initial conditions. The
quality of the coupled model will determine the precision of the assessment (i.e., a bad coupled model would
make a blunt measurement tool). If the major source of forecast error comes from the coupled model, changes
to the ocean initial conditions would have little impact on the forecast skill. This is something to bear in mind
when interpreting results of the impact of the ocean data assimilation on seasonal forecasts.

Alves et al. 2003 found that data assimilation improved the skill of the seasonal forecasts using a version of
the ECMWF coupled model. Since the impact of data assimilation is likely to be model dependent, the same
question is revisited in this paper using the results from the latest seasonal forecasting system at ECMWF, that
became operational in 2002, and that will be referred to as System 2 (S2) hereafter (Andersonet al. 2003).

Although ocean data assimilation is now a common practice in generating ocean initial conditions for seasonal
forecasts, the procedure itself is not without problems. In some cases the estimation of the ocean state can be
degraded by the assimilation. This paper discuses the problems induced by ocean data assimilation, mainly
due to the existence of systematic error and lack of appropriate multivariate formulations (which can be closely
related, as will be shown). The problems are illustrated with examples from the previous ECMWF seasonal
forecast system (System 1 or S1 hereafter), although they are common to other systems (Weaveret al. 2003,
Vialardet al. 2003, Huddlestonet al. 2003, Chepurinet al. 2003). Some of the strategies proposed to deal with
these problems have been explored in the design of the new configuration of the data assimilation in S2.

This paper is organized as follows: in section 2 we describe the basic features of the ocean initialization in
the ECMWF seasonal forecast systems, common to S1 and S2. The presence of systematic error and the lack
of multivariate relationships create problems in the estimation of the salinity field (section 3) and equatorial
currents (section 4). Some of strategies to deal with these problems have been incorporated in S2, whose
performance is briefly discussed in section 5. In section 6 a summary of results is provided. The appendix
provides a detailed comparison of S1 and S2.

2 The ocean initialization

Seasonal forecasts with dynamical coupled models require a good initialization of the thermal structure of
the upper tropical oceans. Different techniques have been used to initialize the ocean models. The simplest
technique to provide ocean initial conditions is to run an ocean model forced with observed wind stress and
with a strong relaxation of the model SST, usually the top level temperature, to observations. Such stand-alone
integrations are referred to as control runs (CNTL) in what follows. The forcing fields used to drive the ocean
model in the operational environment come from ERA15 for the period before 1993 and from Operations from
1994 onwards (ERA/OPS in what follows)1 2.

This technique would be satisfactory if errors in the forcing fields and ocean model were small. Unfortunately,
wind stress products as well as ocean models are known to have significant errors. The uncertainty induced
in the ocean can be measured by using a different wind product to force the same ocean model. A different

1Note that when S2 was made operational, ERA40 had not yet finished. Hence the use of the earlier reanalysis ERA15
2As forcing fields we use daily fluxes of momentum, heat and fresh water, but it is the momentum fluxes that influence the most the

thermal structure of the subsurface.
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Figure 1: Time evolution of the interannual thermocline-anomalies from CNTL (a) and ASSIM (b) integra-
tions, when ERA/OPS winds (black line) and SOC winds (red line) are used.

wind data set has been created by combining the global monthly mean wind stress from the Southampton
Oceanography Centre (SOC) (Joseyet al. 2002) with the daily variability from the ERA/OPS product. Figure
1a shows the evolution of the thermocline anomalies3 in the equatorial region NĨNO3 (150W-90W, 5N-5S)
from two differentCNTL integrations. The black line shows the results from the run forced by ERA/OPS
winds, while the red line shows results from the run that uses SOC winds. The differences in thermocline
depth are of the same order as the interannual variability. Figure1b shows the same diagnostics when data
assimilation is included (ASSIMintegrations hereafter). In order to constrain the interannual variability of the
ocean it is therefore necessary to use some data assimilation.

3as measured by the depth of the 20 degree isotherm (D20)
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2.1 The ocean data assimilation system

The background state for the data assimilation is produced by an ocean model forced by analyzed surface fluxes
of momentum, heat and fresh water. The ocean model is based on HOPE (Hamburg Ocean Primitive Equation
model) version 2 (Latifet al. 1994, Wolffet al. 1997). Horizontal discretization is on an Arakawa E grid with
equatorial refinement. See the appendix for information on the resolution used for S1 and S2.

The ocean data assimilation scheme is essentially univariate temperature Optimum Interpolation (OI) carried
out on overlapping sub-domains of the model horizontal grid. The Optimum Interpolation equations are solved
on each level of the model independently, except for the top level where a strong relaxation to analyzed SSTs is
applied (Reynolds and Smith 1994, Reynoldset al. 2002). Only subsurface temperature is assimilated in both
S1 and S2, but in S2 balance relationships between salinity, velocity and temperature have been introduced (see
appendix).

The model background errors are represented by Gaussian functions which are anisotropic and inhomogeneous,
especially at at the equator. The formulation follows Smithet al. (1991), though some parameter values are
different. Details of the de-correlation scales and differences between S1 and S2 are given in the appendix.
Observation errors are assumed to be correlated in time with a correlation scale of 3 days, and in space with a
spatial correlation function of 2 degrees. The weight given to the data relative to the weight given to the back-
ground field varies with depth to account for the increase in uncertainty associated with the large temperature
gradients near the thermocline.

The observations are from the GTSPP (Global Temperature Salinity Profiling Project) at NODC (National
Oceanographic Data Center). These include data from XBTs and TAO moorings in the equatorial Pacific.
More recently the observing system has been expanded by drifting ARGO floats and the extension of TAO-type
moorings into the tropical Atlantic (PIRATA) and the west Pacific (TRITON).

The temperature observations are assimilated into the oceanic model as follows. Every 10 days the model state
is used as the background for an OI analysis using observations which span a window five days either side of
the model background. An increment to the background is calculated. To avoid exciting gravity waves, and to
allow the model dynamics to adjust gradually to the changes in the density field, this increment is added slowly
over the subsequent 10 days, after which a new background field is available, and the cycle repeated. There
is no temperature assimilation in the top model level; instead the model SST is relaxed to analyzed SST fields
with a relaxation time-scale of 3 days.

Figure2 shows the 1991-1998 average of a longitude-depth section of the assimilation increments along the
equator from a typical ocean analysis. The mean increment has a large scale dipolar structure, as if the data
assimilation were correcting the slope of the thermocline, making it deeper in the western Pacific and shallower
in the eastern Pacific. This kind of error could appear if the equatorial winds were too weak, although it may
be due to other mechanisms.

Regardless of the source of error, figure2 shows that the data assimilation is correcting the system bias, whereas
the scheme assumes the first guess given by the model background is unbiased. From the mathematical point
of view, the presence of systematic error poses the problem of increased variance in the analysis (Dee and
Da Silva 1998). In practice, the presence of systematic error may introduce spurious temporal variability in
regions where the observation coverage is not uniform in time, which may be a serious problem when the
ocean analysis is used to predict interannual variability. Systematic error could also be a serious problem
if inadequate multivariate relationships are put in place: systematically changing the value of temperature
may generate imbalances in the ocean state that damage the ”unconstrained” variables, such as salinity and
velocities, which in turn can feed-back into the systematic error in temperature.
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Figure 2: Equatorial longitude-depth section of mean assimilation temperature increment. Contours every
2◦C/year. The mean corresponds to the time-average during the period 1991-1998.

3 Systematic error and Interannual Variability

In a previous section it was shown that data assimilation constrained the level of interannual variability in areas
with sufficient data coverage, such as the equatorial Pacific. In other areas, where data are sparse, the impact of
data assimilation on the representation of the interannual variability is not always beneficial.

Figure3a shows the time evolution of the sea level in the equatorial Atlantic (70W-30E,5N-5S) as represented
by theCNTL−S1 (red line) andASSIM−S1 (black line) ocean analyses from the previous system (S1). The
most striking feature is the sudden decrease in the sea level of theASSIM−S1 integration at around 1985.
TheCNTL−S1 does not exhibit any particular anomaly during that time. An inspection of the observation
coverage (figure3b) reveals a sudden increase in the number of observations around January 1995, possibly
associated with a researach cruise (see figure4). Other (smaller) sea level changes apparent in theASSIM−S1
run occur when the observation coverage changed: both the increase in the number of observations at around
1992 and the appearance of PIRATA moorings around 1998 are associated with a decrease in the sea level of
the equatorial Atlantic. The latter was reported by Segschneideret al. 2000.

The spurious sea level variability in theASSIM−S1 run of figure3a is caused by the data assimilation trying
to correct for systematic error in temperature (too diffuse thermocline), by means of applying a large nega-
tive increment to the temperature field without updating the salinity field. The process upsets the water mass
characteristics, disrupts the hydrostatic balance and induces spurious convection. Figure5 shows a meridional
section across the equator of the temperature field before and after assimilation. Before the assimilation the
profile is stably stratified. The univariate assimilation of temperature triggers convection and the stratification
is broken.

Convection could be prevented if the water mass properties were preserved, which would imply updating the
salinity field at the same time as the temperature following some kind of conservation principle. This is the basis
of the scheme put forward by Troccoli and Haines 1999. The salinity increments are derived from the analyzed
temperature by using the model temperature (T) and salinity (S) vertical profiles, assuming that the assimilation
is correcting for vertical displacement of the water column and imposing preservation of the T-S relationship
in the model profiles (S(T) scheme). The conservation of water mass properties establishes a relation between
temperature and salinity, in the same way as the geostrophic balance relates the density and the velocity fields.
This scheme has been formulated for an OI framework (Troccoliet al. 2001) and it is one of the ingredients of
data assimilation in S2. Figure6 shows the sea level evolution after applying the T-S constraint (green line).
For comparison, the sea level fromASSIM−S1 is also shown. The problem with discontinuities in sea level
is alleviated by the inclusion of the balance relationship. There is still an obvious discontinuity in the sea level
at around 1985, which could be due to theS(T) scheme not being fully effective (since it will not work if the
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a)

b)

Figure 3: Time evolution of a) the sea level averaged over the equatorial Atlantic (5S-5N), as represented
by the CNTL−S1 (red line) and ASSIM−S1 (black line) from S1, and b) number of observations per
assimilation cycle in the area. The assimilation cycle is 10 days.
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Figure 4: Observation coverage over the Atlantic for January-February 1985.

source of temperature error is due to horizontal advection), and/or to the fact that sporadic data is correcting the
model mean state.

The preservation of the T-S relationship is a nonlinear constraint, but can be linearized and implemented in a
variational formulation (Ricciet al. 2003). This is a step forward for the inclusion of flow dependent properties
in the background error covariance matrix (Weaver, this issue).

4 Systematic error and the velocity field

Figure7 shows a horizontal map of the zonal currents within the tropics from a) the observed climatology from
Reverdinet al. 1994, for b)CNTLand c)ASSIM. Away from the equator, the zonal current is improved with
the data assimilation, as a direct consequence of improved horizontal density gradients: for example, the North
Equatorial Counter Current (NECC) is stronger in the data assimilation run than in the control run. However,
near the equator, the data assimilation has a detrimental effect on the velocity field, especially in the eastern
Pacific, where the eastward component becomes too strong, causing the undercurrent to surface.

In the East Pacific, the degradation of the currents is visible not only at the surface, but also at depth. Figure8
shows the zonal velocity along the equator as a function of depth in the first 300 m for bothCNTLandASSIM.
In the Eastern Pacific, the structure of the undercurrent inASSIMis too broad when compared with observed
current data. This error may be related to the unrealistic vertical circulation near the South American coast,
characterized by very strong downwelling (see figure4 later). The degradation of the surface velocity and the
spurious vertical circulations appear also in other univariate systems (Vialardet al. 2003, Huddlestonet al.
2003)

The spurious circulation induced by the data assimilation may cause additional errors in the temperature fields.
There could be a positive feedback between errors induced by the data assimilation and errors in the model, that
could lead to the existence of bias in the system. For instance, a temperature increment that is not dynamically
balanced could be responsible for spurious circulations, which in turn could create further errors in the first
guess for successive data assimilation cycles. Burgerset al. 2002 proposed a scheme to prevent the disruption
of the geostrophic balance by imposing constraints between the density and velocity increments.
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Figure 5: Latitude-Depth sections of temperature across the Atlantic (30◦W) before (a) and after (b)
univariate assimilation of temperature data. From Troccoliet al.2002

Figure 6: Time evolution of a) the sea level averaged over the equatorial Atlantic, as represented by the
ASSIM with S(T) scheme (green line) and ASSIM−S1 (black line)

.
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Figure 7: Mean zonal surface currents in the tropical oceans, the Reverdin climatology (a), from CNTL
(b), and from ASSIM (c). The contour interval is 0.1 m/s.
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Figure 8: Equatorial depth-longitude section of the zonal velocity, from CNTL (a), from ASSIM (b) (1991-
1998 time average). The contour interval is 0.1 m/s
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Figure 9: Equatorial longitude-depth section of the vertical velocity in the ASSIM run (1991-1998 average).
Contour interval is 0.5m/day
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The systematic error may have its origins in the momentum equation (resulting from inaccuracies in the wind
field and in the vertical mixing of momentum among others). The errors in the momentum equations may
even stem from the data assimilation procedure itself, which can introduce errors in the velocity field when
disrupting the geostrophic balance between density and velocity. The scheme of Bellet al. 2003 for estimation
and correction of the bias provides another approach for correction of the errors in the momentum equation,
assuming that the error arises entirely from an incorrect value in the pressure gradient terms. There is a third
category of methods, not discussed here, in which the error is estimated using adjoint methods (Bonekamp
et al. 2001, Vidardet al. 2003).

4.1 Velocity adjustments

Imposing a geostrophic constraint between density and velocity increments is straightforward except near the
equator where the geostrophic relationship breaks down. However, even at the equator it is possible to apply
some kind of constraint (using scaling, symmetry, or continuity arguments), to come out with a local solution.
That would produce two sets of solutions (one for the equator and another for outside the equator) that can be
blended together. The equatorial solution constraint is important since it is at the equator that the currents are
degraded most in the presence of data assimilation.

Here, the equatorial solution is obtained from the y-derivative of the geostrophic relation in ab -plane. Using
the example of the shallow water equations, if∆h is the assimilation increment in surface elevation (equivalent
to a density increment in a GCM), the corresponding velocity increments(∆u,∆v) at the equator are given by
1:

∆veq = 0

∆ueq = −g′

b

¶ 2∆h
¶y2 (1)

where the updates to the meridional velocity are neglected. Outside the equator, the geostrophic balance is
given by2:

∆vneq =
g′

f
¶∆h
¶x

∆uneq = −g′

f
¶∆h
¶y

(2)

The two solutions are blended by means of Gaussian weights, assuming that the equatorial solution holds for
latitudes inside the Rossby radius of deformationy0 (taken to be 2◦). The Gaussian weights ensure that the
blended solution also satisfies the geostrophic balance.

∆u = g
(
(1−e(y/y0)

2
)∆uneq+e(y/y0)

2
∆ueq

)
∆v = g

(
(1−e(y/y0)

2
)

∆vneq) (3)

The balance constraint can be generalized by allowing only a fractiong of the density increment to contribute
to the geostrophic balance. In a generic case,g could vary geographically, and also be a function of depth.

Figure10shows the surface currents in the experimentASSIMG where the geostrophic balance has been applied.
Unlike the experimentASSIM, the undercurrent does not surface. The mean value of the zonal current is more
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Figure 10: Mean zonal surface currents in the tropical oceans, from a data assimilation experiment where
balanced updates to the velocity field are added (experiment ASSIMG). For comparison see figure7.
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Figure 11: As figure2, but from a data assimilation experiment where balanced updates to the velocity field
are added (experiment ASSIMG). Notice the reduction in the mean assimilation increment.

in agreement with the Reverdin climatology. The main effect of the geostrophic updates to velocity happens
near the equator. Comparison with TAO currents indicates that the velocity updates also correct the velocity
fields at depth, in particular in the eastern Pacific (not shown).

Given that the velocity increments improve the errors in the velocity field, it can be questioned if the erroneous
circulations induced by the data assimilation in experimentASSIMdid feedback on the errors in the temperature
field. If so, smaller temperature increments in experimentASSIMG would be expected. Figure11 shows that
this is indeed the case. The mean temperature increments in experimentASSIMG in the upper Equatorial Pacific
are about 20% smaller than in experimentASSIM(figure2).

The geostrophic balance scheme to update the velocity field has been implemented in the data assimilation of
S2. The operational implementation uses a depth dependent value ofg. The geostrophic balance has also been
implemented successfully in a multivariate variational environment in the OPA ocean model (Weaver 2003, this
issue).
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4.2 Bias correction method

The standard procedure to deal with systematic error in a data assimilation system is to augment the model state
with a set of systematic error variables (Dee and Da Silva, 1998). Specific assumptions about the nature and
time evolution of the systematic error are needed. This approach is followed by the Bellet al. 2003 scheme for
bias correction in a sequential data assimilation. Their scheme assumes that the systematic error comes from
errors in the formulation of the pressure gradient, i.e., the error has a purely divergent component, and hence
can be inferred using density information. In the shallow water equation example, this would be achieved by

adding a correction term( ¶hb
¶x ,

¶hb
¶y ) to the pressure gradient:

¶u
¶ t

− f v+ ru = −g′
¶ (h+hb)

¶x
+X

¶v
¶ t

+ f u+ rv = −g′
¶ (h+hb)

¶y
+Y

¶h
¶ t

+H

(
¶u
¶x

+
¶v
¶y

)
= Q (4)

If the source of the error came from the wind forcing, this method could correct for error in the divergence of
the wind, but it would not correct for errors in the curl.

The bias term can be estimated using information from assimilation increments of density ( or temperature and
salinity). The time evolution for the bias term is proportional to the time integral of the density increments
(∆h):

hb(t) = hb(t −∆t)−a∆h(t) (5)

wherea is a constant larger than zero but smaller than 1, and∆t is the assimilation interval (10 days in our
case). If the estimation is correct, after a certain time,∆h(t) would be zero, and the correction term would reach
a constant value.

The above method has been applied to the data assimilation system described in section 2, prior to the inclusion
of any balance constraints. The inclusion of the pressure gradient correction avoids degradation of the equatorial
circulation, even when no geostrophic velocity increments are applied. Figure12 shows the zonal velocity in
the bias correction experiment (ASSIMB1), which is better than that from experimentASSIMshown in figure
7c.

As expected from its design, the bias correction method also reduces the value of the average analysis increment.
A more stringent test would be to check if the bias reaches a constant value, which can be easily done by looking
at the evolution of the time-integrated assimilation increments. Figure13 shows the time evolution of the
accumulated assimilation increment at two depths in region EQ1 (130W-90W, 5N-5S) from 3 experiments with
different values of parametera. In experimentASSIMB1 (black curve)a = 0.1, whilsta = 0.3 in experiment
ASSIMB3 (in red). The standard data assimilationASSIMis also shown as a reference (green curve) The 2
panels of figure13 are for depths 30m and 175m. If the bias were constant and the correction scheme were
correct, the accumulated increment would tend to an asymptotic value. This criterion can be used to tune the
value ofa. The first feature to notice is the sensitivity of the scheme to the value chosen fora. At 30m depth
(13a) the evolution of the accumulated increment stabilizes when the bias correction scheme is switched on
for a = 0.1 Even for the lower value ofa there is a hint of overcorrection (the accumulated increments of
ASSIMB1 (black line) andASSIMB3 (red line) have different sign to those of experimentASSIM(green line)).
At deeper layers, where the bias in the uncorrected cases (ASSIM) is smaller, the evolution of the bias is far
from constant; at 175m, the integrated increment shows large fluctuations in time, which are correlated with
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Figure 12: Mean zonal surface currents over the tropical oceans, from the data assimilation experiment
where the bias is corrected (experiment ASSIMB1). For comparison with figure7.

the interannual variability. The El Niño of 1997-1998 is clearly visible in figure13b, for instance. In this case
the smaller increments are those from the standard experimentASSIM. This is a clear example of the error of
the system being flow-dependent, for which the bias correction scheme is not designed. It could be possible to
allow for slow time fluctuations in the error, by introducing a memory termb in the bias estimation equation:

hb(t) = bhb(t −∆t)−a∆h(t) (6)

with b a number between 0 and 1. The relative values ofa andb would determine the response of the estimated
bias to changes in the flow, or other sources of non stationary systematic errors. A more comprehensive scheme
for bias treatment is proposed by Dee, this issue.

5 Ocean Data Assimilation in System 2: Performance

Since January 2002 S2 has been the operational seasonal forecast system at ECMWF. Andersonet al. 2003
offers a comprehensive description of the system and the performance of the coupled forecasts. Details of the
ocean model and ocean data assimilation are outlined in the appendix. The performance of the ocean analysis
is briefly discussed here.

The main changes in the ocean data assimilation of S2 are the introduction of salinity and velocity updates
when assimilating subsurface temperature. The salinity updates are derived using theS(T) scheme discussed
in section 3, which is active below the mixed layer. To calculate the velocity increments a depth dependent
geostrophic constraint is used (g(z) in equation3).

An adequate treatment of the systematic error would have been desirable. At the time of the operational
implementation, the only scheme available was the bias correction scheme represented by equation5. As the
systematic error was likely to change with time, this version was not considered suitable for operational use.
Instead, a more conservative and traditional approach was implemented: in order to control the systematic error,
subsurface temperature and salinity are weakly relaxed to the WOA98 climatology (Levituset al. 1998). The
suitability of this choice is discussed below.
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a)

b)

Figure 13: Time series of the accumulated assimilation increment in region EQ1 (130W-90W,5N-5S), at
30 m (panel a) and 175m (panel b). Green is for experiment ASSIM, black is for ASSIMB1, and red is for
ASSIMB3.
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5.1 Impact of data assimilation on the state estimation

Figure14 shows the mean difference between independent observations (Johnsonet al. 2000, Johnsonet al.
2002) and the analyses from S2. The two curves in each panel correspond to theCNTL−S2 (blue) and
ASSIM−S2 (red). The data assimilation reduces the mean bias in temperature (upper panels), especially in
the western equatorial Pacific (160E-150W, 5N-5S). In the eastern equatorial Pacific (150W-90W, 5N-5S) the
bias inASSIM−S2 is also reduced, but has the opposite sign to the bias inCNTL−S2: in the upper 200m the
ASSIM−S2 analysis is biased warm with respect to the observations, whereas theCNTL−S2 analysis is biased
cold. This indicates that the data assimilation is a source of systematic error itself. The error may stem from
the inadequacy of the multivariate formulation (problems with velocities or salinity) and/or from the relaxation
to WOA98 climatology. The relaxation to climatology can be a source of error if there are trends in the climate
system. The relaxation technique may also be flawed if only temperature and salinity are changed without
imposing any constraint on the velocity, especially at the equator (following the same arguments discussed in
the previous section). Finally, the values at the equator of the gridded climatology may be contaminated by
interpolation errors. Further work is in progress to understand the problem.

The lower panels in14 show the mean differences (observations minus analysis) in the salinity field. The
data assimilation is very effective in reducing the bias in salinity, even though salinity data were not directly
assimilated. This is likely to come from theS(T) scheme, since the salinity is better constrained where the
scheme is active, i.e., below the below the mixed layer. The bias in the surface salinity is also reduced in the
ASSIM−S2 analysis, even when no direct salinity correction is applied in the upper 50 m

Figure15 shows profiles of the time averaged zonal velocity from theASSIM−S1 (red line) andCNTL−S2
(blue line) analyses, together with the currents from TAO observations at selected moorings. In all the locations
the currents fromASSIM−S2 are better than those fromCNTL−S2. There is no sign of the undercurrent
surfacing in the eastern Pacific. At 110W, the undercurrent in theASSIM−S2 run is stronger than in the
CNTL−S2 run, with its maximum closer to the observed value, but the shape is still too broad. This suggests
that in S2 the value of parameterg (in equation3) below 150m may be too small.

The effect of data assimilation on the estimation of the interannual variability can be measured by comparison
with altimeter data. Figure16 shows the correlation of the sea level from theASSIMruns of S1 and S2 with
the altimeter data in different equatorial regions. Over the East Pacific (150W-90W, 5N-5S), both S1 and S2
are very well correlated with the altimeter data. The correlation is also good over the western-central Pacific
(160E-150W, 5N- 5S), with S2 being slightly better than S1, probably due to the beneficial impact of theS(T)
scheme. The correlation in the other oceans is not so good. Overall S2 is better than S1, especially over the
equatorial Atlantic, where the effect of theS(T) scheme is more noticeable. However, this is still the area where
the representation of interannual variability is poor, as the low values of the correlation with the altimeter data
indicate.

5.2 Impact of data assimilation on ocean initialization

The ultimate test of the data assimilation in a seasonal forecasting system is whether it improves the forecast
skill. SST is the variable traditionally used for skill assessment. Alveset al. 2003 addressed this question
using results from a forecast system similar to S1 (S1A in what follows). Their results are presented here for
comparison with those of S2. Figure17 shows a bar diagram representing the errors in predicting SST of S1A
and S2, for both theASSIMandCNTL initialization. The results are shown for 2 areas in the equatorial Pacific
which are more affected by ENSO variability: NIÑO3 (150W-90W, 5N-5S) and NIÑO4 (160E-150W, 5N-5S).
S2 (blue bars) exhibits lower errors than S1A (pink bars). In both systems, the errors are reduced when data
assimilation is used to initialize the ocean - the errors from theASSIMinitialization (dashed bars) are smaller
than the errors from theCNTL initialization (solid bars).

In both systems the impact of assimilation is larger in NIÑO3 than in NĨNO4. NIÑO3 is a dynamically active
area, where a large part of the interannual variability is related to the vertical advection of heat (weak upwelling
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Figure 14: Independent observations minus analysis (1993-2002 average). The analysis are the CNTL
(blue) and ASSIM (red) integrations from S2.
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Figure 15: Comparisons with observed currents. Shown are the zonal velocities from ASSIM−S2 (red line
), CNTL−S2 (blue line) and TAO currents.
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EastPac West Pac Eq Atl Eq Ind

Figure 16: Correlation between the sea level from the altimeter data and the sea level from the ASSIM−S1
(solid bars) and ASSIM−S2 (dashed bars).
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Figure 17: SST forecast errors in NIÑO3 and NĨNO4. Shown are results from S1A (pink bars) and S2 (blue
bars), when the ocean initial conditions are taken from the ASSIM (dashed bars) and CNTL (solid bars)
integrations. The bars represent the 0-6 month mean absolute error. The period for the statistics is the same
used by Alveset al.2003 (1991-1997).

and/or weakened vertical thermal gradient). Therefore, initialization of the subsurface will have a more direct
effect on the forecast skill over this area. The processes that influence the interannual variability in NIÑO4 are
more varied, some of them involving complex interaction with surface salinity and horizontal advection (Vialard
et al. 2002,). For the data assimilation to have a noticeable impact on the representation of these processes it
would be required to have a good representation of the mixed layer physics and adequate initialization of
mixed layer salinity. This latter could be achieved by assimilating directly salinity data, or by deriving salinity
information from the altimeter data (Vossepoelet al. 1999, Maes and Behringer, 2000).

Finally, the impact of data assimilation in NIÑO3 forecast error is smaller in S2 (16% ) than in S1A (30%). It
is difficult to interpret this result, since one should bear in mind the limits of a coupled model as a measurement
tool. It indicates that in S2 the main causes of forecast error are others than those sampled by the existing
methods of initializing the ocean (CNTLversusASSIM). The remaining level of forecast error is a combination
of predictability limit, model error, and errors in the ocean initial conditions not yet sampled.

6 Summary and conclusions

The simplest technique to provide ocean initial conditions is to run an ocean model forced with observed
wind stress. It is shown that this technique is not satisfactory since errors in the forcing fields result in large
uncertainty in the ocean subsurface. In the equatorial Pacific, assimilation of sub-surface ocean observations
overcomes the problems due to wind error, correcting both the mean state and the interannual variability. In
other areas however the data assimilation can contaminate the representation of the interannual variability,
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especially in the presence of system bias where the data is sporadic in time, and/or by disruption of physical
balances if there are not appropriate multivariate relationships.

An example of the latter has been illustrated using results of the ocean re-analysis from the previous seasonal
forecasting system (S1). The univariate assimilation of temperature data degraded the interannual variability of
the sea level in the equatorial Atlantic. The problem is reduced if the salinity field is updated during the assim-
ilation process, by imposing a constraint between salinity and temperature variations based on the preservation
the water mass properties. Some problems still remain, probably due to the presence of systematic error.

Results show that the equatorial currents can also be degraded during the univariate assimilation of temperature
data. The spurious circulations induced by the assimilation procedure contribute to the systematic error. Im-
posing balance relationship between the density and the velocity field not only improves the estimation of the
equatorial currents, but also reduces the size of the mean temperature increment.

Multivariate constraints for salinity and velocity have been implemented successfully in the data assimilation
component of the current seasonal forecasting system S2. Comparison with independent data shows that in
the equatorial Pacific the assimilation of subsurface temperature data improves the mean state of temperature,
salinity and velocity.

Sub-surface data assimilation has also a positive impact on the SST seasonal forecasts. The initialization of
the ocean by data assimilation reduces the error in NIÑO3 SST forecast by 30% in S1 and by 16% in S2. The
impact in NIÑO 4, although positive, is smaller, in both S1 and S2.

The presence of systematic error poses a problem for obtaining reliable long term ocean reanalysis by assimi-
lating data. The scheme proposed by Bellet al. 2003 to estimate and correct the bias by linking the temperature
bias with errors in the pressure gradient offers promising results, since it prevents the degradation of the equa-
torial currents. Further developments are needed to allow for flow-dependent systematic error.

7 Appendix

S2 is broadly similar to S1, but there are a number of differences in the ocean, the ocean data assimilation, the
atmospheric model and the method of ensemble generation. These are documented in Andersonet al. 2003,
and summarized in table 1. The most relevant aspects of the ocean model and ocean data assimilation in S2 are
outlined below.

In S2, the ocean model has 29 levels in the vertical compared to 20 in S1. Near the surface the level thickness
is 10m compared with 20m in S1. In S2, the horizontal resolution is equivalent to 1 degree, with equatorial
refinement in the meridional direction, where the resolution is 0.3 degrees (0.3Eq in table 1). For S1, the
equivalent values are 2 and 0.5 degrees.

A substantial change has been made to the way salinity and velocities are handled in the assimilation process.
In S1, no change is made to salinity nor to the velocity field following an OI correction to T, whereas in S2 these
fields are also updated. Salinity is changed beneath the surface layer in order to preserve the T-S relationship
(Troccoliet al. 2001). The update to the velocity field is calculated by imposing a geostrophic balance between
the velocity increment and the density change resulting from the T and S increments (Burgerset al. 2002).
As a way of dealing with systematic error, both subsurface temperature and salinity are weakly relaxed to the
WOA98 climatology (18 months time-scale).

In S2, the data assimilation scheme remains OI as in S1, but the background error covariances have been
changed. In particular the de-correlation scales have been reduced (see table 2). In both S1 and S2, the
weight given to the data relative to the weight given to the background field varies with depth to account for an
increase in uncertainty associated with the large gradients near the thermocline. The dependence with depth of
both observations and background errors can be expressed as follows:
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System 1 System2
Atmosphere cycle IFS (15r8) IFS (23r4)

Model resolution horizontal T63 TL95
vertical 31 levels 40 levels

Ocean cycle HOPE h2e8 HOPE h2e13
Model resolution horizontal 2x2 (0.5Eq) 1x1(0.3Eq)

vertical 20 levels 29 levels
Ocean Scheme OI OI
Data Data Temperature Temperature

Assimilation Salinity none S(T)
velocity none geostrophy
bias treatment none Levitus relaxation
no of analysis 1 5
SST Relaxation OI v1 OI v2

Ensemble Lag average burst mode (40)
Generation TP +WP+SP
Calibration Period 1991-1996 1987-2001

Atmos IC ERA/OPS ERA/OPS
Ocean forcing ERA/OPS (f c) ERA/OPS (an)

Table 1: Summary of differences between system 1 and system 2.

Error(z) = f (as(z),bL
¶T
¶z

) (7)

(8)

Where f represents a function dependent on two arguments. The first one (as(z)) is a prescribed dependence
on z, constant in time and space, and the second term (bL¶T

¶z ) is a flow-dependent term that represents the
position of the thermocline, since it is proportional to the vertical temperature gradient. Parametersa andb
have different values for the background and the observations, and are different for S1 and S2, as can be seen
in table 2. In S1, the background and the observations are given the same weight (except in the thermocline).
In S2, the observations are given half the weight of the background. The functionf is themaxfunction. This
choice may need to be revised in the future, since it may introduce structures smaller than the de-correlation
scales.

One other difference relates to how the model is forced to create ocean initial conditions. In S1 we used the
daily 0-24 averaged forecast stresses from the atmospheric NWP system (f c in table 1). The forcing fields used
to create ocean initial conditions as part of the ocean assimilation system come from ERA15 for the period
prior to 1993 and from Operations from 1994 onwards (ERA/OPS). Model changes and changes to the analysis
system were reflected in these stresses creating a low frequency variation that was unphysical and undesirable.
By using analyzed winds rather than forecast stresses and calculating the daily mean stresses offline using a
bulk formula, some of this variability could be reduced. The analysis is sampled 4 times per day to calculate
the daily wind stress. We refer to this way of computing the stressan in table 1.

The ocean initial conditions are provided not from a single ocean analysis but from a 5-member ensemble of
ocean analyses. The analyses differ in that a measure of uncertainty in the surface winds used to force the
ocean is taken into account (WP in Table 1). In the absence of ocean data assimilation, the uncertainty in ocean
state is relatively large, but in the presence of ocean data assimilation is much smaller (Vialardet al.2003. The
ensemble of forecasts is produced by using the 5 different ocean analyses and perturbing the surface of the
ocean at the initial time, using SST perturbations (TP), and during the coupled integration by using stochastic
physics (Buizzaet al.1999) (SP in table 1).
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System 1 System2
Observation error a 1 0.5

b 0.2 0.1
L 25(m) 25 (m)

Background error a 1 1
b 0.4 0.2
L(m) 25 25

Zonal scales (Km) mid latitudes 400 300
equator 1500 1000

Meridional scales (Km) mid latitudes 400 300
equator 200 150

Table 2: Summary of differences in the error covariances for temperature between the data assimilation components of
system 1 and system 2.

The SSTs to which the ocean model is relaxed are different. The SST for S1 are the same as those used by the
atmospheric analysis system, based on Reynolds OI version 1 (Reynolds and Smith 1995). For S2 we use the
improved SST analyses from Reynolds OI version 2 (Reynoldset al. 2002).
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