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1. Introduction 

Currently, rainfall retrieval over ocean from passive microwave satellite observations represents the 
best compromise between estimation accuracy and spatial data coverage. Infrared data is available 
with higher temporal frequency from geostationary satellites but the link of top-of-the-atmosphere in-
frared emission to near-surface rainfall is very indirect. Therefore, all algorithms have to exploit the 
space-time relation between cloud cover / cloud top height and areal mean rainfall. With TRMM1 the 
first spaceborne precipitation radar became available and provides the most detailed information on 
precipitation vertical structure and quantity over both land and ocean up to date.  

The accuracy of precipitation estimates from satellite observations has been the target of numerous 
intercomparison studies (Ebert and Manton 1998, Smith et al. 1998, Adler et al. 2001) which were ini-
tiated to evaluate the large number of algorithms that had emerged with the availability of the opera-
tional SSM/I2 series. As a consequence, permanent and globally coordinated activities have been 
founded such as the GPCP3, the TRMM validation field campaigns, and the WMO-IPWG4.  

TRMM has also encouraged several data assimilation efforts (e.g. Marécal and Mahfouf 2002, Hou et 
al. 2002). In data assimilation, the proper definition of errors associated with the assimilated product is 
crucial because it determines the weight that is put on the observation in the analysis. Thus recent al-
gorithm development efforts have made the error definition one of their key issues (Kummerow et al. 
2001). 

This paper presents two approaches for the estimation of rainfall retrieval errors as well as an example 
of the influence of data with different error characteristics on data assimilation. The latter is particu-
larly important if, for example, data coverage has to be traded-off against data quality which becomes 
an issue in the preparation of GPM5. In this paper, retrieval errors are calculated using the definition of 
random errors inherent to the retrieval method itself and by the validation of retrieved profiles with 
independent data. Secondly, the issue of data quality/coverage in data assimilation is illustrated by 
comparing rainfall retrievals from TMI6 vs. SSM/I data in an assimilation experiment over one month. 

2. Retrieval algorithm 

Methodology 

Bayes’ formulation of the ‘a posteriori’ probability, P(x|y), that state x occurs and observation y can be 
made for non-linear problem is: 
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1  Tropical Rainfall Measuring Mission. 
2  Special Sensor Microwave / Imager. 
3  Global Precipitation Climatology Project. 
4  World Meteorological Organisation - International Precipitation Working Group. 
5  Global Precipitation Mission. 
6  TRMM Microwave Imager. 



(e.g. Rodgers 2000).  F(x) denotes the simulated observation with observation operator F applied to 
state x, and S denotes the error covariance matrix of observation/simulation (index ‘e’) and ‘a priori’ 
state (index ‘a’). Eq. (1) assumes that some ‘a priori’ knowledge exists and that the errors have Gaus-
sian distributions. In the presence of clouds and precipitation the probability distribution P(x|y) is not 
very well described by a Gaussian distribution and the ‘a priori’ knowledge is difficult to obtain in a 
stand-alone algorithm so that the ‘expected’ value of E(x) may be taken as a solution to the optimum 
estimate of x that is the mean state averaged over the probability distribution: 
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Using Eq. (1) and assuming that the two terms on the right hand side are uncorrelated: 
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P(x) is the known distribution of x-xa. Assuming that a database - say from combined cloud-radiative 
transfer model simulations - exists that represents sufficiently well the true distribution of x, the inte-
gral may be replaced by a summation over all xi contained in the database: 
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with normalization factor: 
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This form is used in several algorithms for the retrieval of precipitation from passive microwave ob-
servations (e.g. Kummerow et al. 1996, Olson et al. 1996, Bauer et al. 2001).  

Error estimation 

In a similar way, the retrieval uncertainty can be estimated: 
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Apart from numerous studies on algorithm validation by independent observations from rain gauges or 
surface radars, only a few have dealt with the error estimation from error modelling. Physical algo-
rithm development usually involves the combined modelling of clouds, precipitation, and radiative 
transfer also accounting for effects such as radiometer viewing geometry and varying spatial resolu-
tion per channel. Therefore error modelling requires the estimation of individual error sources and 
their propagation through the entire modelling chain. At present, only this combined error has been 
analyzed in terms of contributions from signal ambiguity to the total error (Bauer 2001) or the insuffi-
cient representation of the natural variability in the retrieval database vs. modelling errors (L’Ecuyer 
and Stephens 2002). 

Both Bauer et al. (2002) and L’Ecuyer and Stephens (2002) have quantified the gross functional de-
pendence of rainfall retrieval errors as a function of rain rate on the basis of Eq. (6) and different data-
sets for algorithm training and application. Figure 1 shows this dependence for three different algo-
rithms (PATER, BAMPR, 2A12 V5.1) which employ Eq. (4) but use different simulation databases 
and quality control checks. The solid lines represent the standard deviation between radiometer and 
precipitation radar (PR) estimates and the comparison suggests that the errors represented by Eq. (6) 
are quite realistic even though they only cover the random error component. 

All algorithms have in common that the relative errors are fairly large at low rain rates (100-200%) 
because of the increasing noise contribution from surface emission and atmospheric/cloud background 
emission. In the region of highest sensitivity of microwave window channels with respect to precipita-
tion (~1-20 mm/h), errors decrease to 50% or even less. Depending on whether the algorithm uses 



higher frequency channels (Figure 1b, c) and the representativeness of the database, relative errors 
may increase again for larger rain amounts.  

Figure 1: Bayesian retrieval errors from as a function 
of rain rate at product resolution for PATER (a), 
BAMPR (b), and 2A12 V5.1 (c). Superimposed are 
lines denoting average differences between PATER 
and PR (a) and 2A12 V5.1 and PR (c) retrievals, 
respectively [for algorithm details see Bauer et al. 
(2002)]. 

Application example 

The retrieval algorithm [Eq. (4)] was 
implemented to demonstrate the potential of 
microwave temperature-sounding channels for 
precipitation profile retrieval. The algorithm uses 
a database from combined cloud-radiative transfer 
model simulations of hurricane Bonnie over the 
Western Carribean Sea. The cyclone was also 
well observed during the field campaign 
CAMEX-37 on August 26, 1998. The retrieval 
method was applied to airborne observations with 
the NAST-M8 radiometer onboard the ER-2 
aircraft. This radiometer has sounding channels in 
two oxygen absorption complexes near 50-57 
GHz and 118.75 GHz (Blackwell et al. 2001). The 
channels in both bands are collocated in such a 
way that for a channel near 50 GHz there is a 
channel near 118 GHz with a similar clear-sky 
weighting function. Clouds and precipitation can 

be sensed by their differential absorption and scattering features in both bands. Once precipitation pro-
files are retrieved, radar reflectivities can be simulated and compared to EDOP9 observations from the 

same aircraft. Therefore the retrieval accuracy can be 
estimated from the theoretical retrieval error given by 
Eq. (6) and by a comparison with radar reflectivities 
(Bauer and Mugnai 2003). The latter also leads to an 
estimate of systematic errors. 

Several overpasses over hurricane Bonnie were 
carried out by the NASA ER-2 aircraft on August 26. 
The payload of the ER-2 aircraft also contained the 
ER-2 Doppler (EDOP) radar (Heymsfield et al. 
1996). The EDOP radar is a two-antenna 9.6 GHz 
Doppler radar with one antenna pointing in nadir 
direction and the other pointing forward. In this study 
only the reflectivities from the nadir beam are used 
for validating the retrievals from NAST-M nadir 
observations.  
Figure 2: Retrieval errors as a function of rain rates from 
aircraft data (> 200 000 data points). 

                                                 
7 Convection and Moisture Experiment. 
8 National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Aircraft Sounder Testbed-
Microwave (NAST-M). 
9 ER-2 Doppler radar  



A graph similar to Figure 1 was produced from the aircraft retrievals (Figure 2). While for rain rates > 
5 mm/h, the errors match those from the satellite retrievals fairly well, the errors are much smaller be-
low 5 mm/h. A possible explanation is the difference of spatial resolutions. This is because the aircraft 
data resolves details at 2 km scales while the satellite retrievals suffer from beam-filling errors that is 
the mismatch between spatially averaged high-resolution retrievals and retrievals from spatially aver-
aged observations. 

The retrieved profiles are converted to synthetic radar reflectivity profiles to be compared to the ob-
served profiles. The advantage of this approach over the comparison of rain rates is that the utilization 

of a radar retrieval algorithm with different 
assumptions on particle size distributions and optical 
properties is avoided. The comparison of reflectivities 
employs the same radiative transfer model that was 
used for the generation of the retrieval database. 
Therefore, attenuated reflectivities at any given fre-
quency can easily be calculated and compared to the 
observations. The microwave retrievals were carried 
out for 2, 8, and 16 channels (at 50-57 and at 118 
GHz) to test the contribution of channel combinations 
to retrieval accuracy, respectively. 

The reflectivity statistics over all 929 profiles are 
summarized in Figure 3. The shading indicates the 
histograms of reflectivities vs. altitude and the solid 
lines represent the average profiles to be compared to 
the averaged observations given by the dashed line. 
The main observations are that both 16-channel and 
8-channel retrievals work well and produce almost 
identical results. In the rain layer, average re-
flectivities agree within 1 dBZ (15-20% of rainrate).  
Figure 3: Modelled EDOP reflectivity from NAST-M 
retrievals using 16 channels (a), 8 channels (b), 2 channels 
(c) as well as observed reflectivities (d). 

Near the freezing level, differences occur for two rea-
sons: (1) the observed freezing level height is near 5-5.5 km and the maximum of the bright band is at 
4.5 km. The retrievals show a little more intense peak and a higher frequency of occurrence as well as 
a freezing level at 6.5 km.  

This difference in altitude is explained by a temperature bias that was identified comparing (1) the 
temperature profiles from the database with those from the ECMWF analysis on 26/08/1998 at 12 
UTC; (2) the clear-sky TB’s between observations and simulations. Even though the biases in TB's 
may be corrected, the database still contains biased temperature profiles. Another observation is that 
the simulated reflectivities above freezing level are considerably higher (up to 5 dBZ) than the ob-
served ones. This can only be explained by rather large differences between simulated and observed 
snow/graupel contents. In any case, the retrieval of rain profiles is not drastically affected by this prob-
lem.  

3. Data assimilation of satellite derived rain rates 

Rain rate retrievals from the microwave radiometers SSM/I and TMI have been calculated at pixel 
resolution and calibrated with data from the precipitation radar (PR) for TMI and SSM/I (Bauer et al. 
2001). Each rain rate Ri (actually a rain liquid water content) is provided along with its error estimate. 
Averaged rain rates have been obtained by binning each observation within model grid boxes to avoid 
a spatial interpolation of temperature and humidity profiles at observation locations (Marécal and 
Mahfouf 2000). The estimation of averaged rain rate errors needs depends on their spatial correlation 
within each model grid box. The standard deviation of the mean rain rate is defined by: 
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where Cij is the spatial correlation of errors between two points i and j separated by a distance dij. 
Therefore, before computing rain rate averages and their associated errors, it is first necessary to use a 
sample of the raw satellite retrievals in order to compute Cij.   

On a model grid having a resolution of about 120 km, all pairs of rainy points within each model grid 
box where collected together with their associated errors. The use of a coarser grid than the actual 
model grid allows the computation of correlations over distances up to 120 km. The resolution of the 
TMI product is about 15 km with a sampling at ~10 km. Distances have been binned into 5 km inter-
vals for TMI to compute spatial correlations. For SSM/I this distance is reduced to 25 km because this 
satellite has a coarser sampling. The polynomial fit used in Bauer et al. (2002) has been kept (with dif-
ferent coefficients): 
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The curves C (r) are plotted in Figure 4 for 
TMI and SSM/I. The spatial correlations are 
very consistent between the two retrievals, 
since both TMI and SSM/I retrievals were 
calibrated with PR data. For a given 6-hour 
period (26 May 2002: 0300-0900 UTC) the 
TMI and SSM/I rain rates are plotted with 
their associated errors both at the pixel reso-
lution (15 km for TMI and 25 km for SSM/I) 
and averaged to the model resolution (Figure 
5).  
Figure 4: Spatial correlation of TMI (solid line) 
and SSM/I (dashed line) rainfall rate retrieval 
errors. 

At pixel resolution, important differences are 
noticed between the products. First, the lack of the 10 GHz channel and also the larger pixels reduce 
the SSM/I rain rate intensities to maximum values around 15 mm/h. On the contrary, the TMI product 
shows significant amounts of rain rates above 10 mm/h. The averaging procedure reduces error by 20-
50%.  

Ambiguities in the retrieval database are illustrated by the fact that some rain rate values can be re-
trieved with a wide range of different accuracies. For SSM/I rain rates, the larger footprint reduces the 
differences between the scatter plots at pixel and model resolution. Rain rate errors are usually larger 
than with TMI and there is a non-negligible amount of very low rain rates (<0.01 mm/h) that may 
come from the different rejection criteria between the two products. However, it is unlikely that such 
small amounts could have a significant impact when assimilated due to the very large corresponding 
errors at model scale (>1000%). It is interesting to note that in the range 0.1 to 5 mm/h (peak of the 
model pdf) the errors between the two products are quite similar. 

A series of three 4D-Var assimilation experiments starting on the 01 May 2001 over one month where 
performed using the ECMWF forecasting system. An ensemble of 10-day forecasts was also run from 
the 1200 UTC analyses. The assimilation system is an incremental 4D-Var where the minimisation in 
performed at a lower model resolution (horizontal grid about 120 km) and the assimilation window is 
12 hours.  

First, simplified 1D-Var assimilations of rain rates are performed every 6 hours using observations 3 
hours before and after the analysis time to produce total column water vapour (TCWV) retrievals. 
Then these two batches of TCWV retrievals in rainy areas are introduced in 4D-Var as new observa-



tions.  The first assimilation is a 'control' using the operational configuration of the forecasting system 
at the time, the second assimilation includes TMI PATER rain rates on top of all data from the control, 
while the third experiment is similar to TMI PATER but assimilates rain rates from SSM/I instead 
(two satellites are used: DMSP F-13 and F-14). 

 

 

 

 

 

 

 

 

 
Figure 5: Errors as a function of rain rate at pixel resolution and model resolution (~40 km) for SSM/I products 
(left panel) and TMI products (right panel). 

Figure 6: Time series (5-25 May 2001) of RMS erro
day-3 and day-5 forecasts issued from the control assimilation and from the assimilation with SSM/I (left) and 
TMI (right) derived rain rates. 

rs of the geopotential at 500 hpa over North America for 

Figure 6 shows time series of day-3 and day-5 forecasts for a 3-week period over the Northern Ameri-
can continent for the geopotential at 500 hpa. For three forecasts starting on the 17, 18 and 19 May the 
root mean square errors (rmse) at day-5 are larger than 100m. The impact of TMI data is to improve 
significantly the forecast starting on 2002/05/18 (rmse around 60m) and also to have a positive (but 
weaker) impact on the two other poor forecasts. The impact in the medium range is also present at 
shorter ranges (over this period there is an almost systematic improvement at 72 h). The impact of 
SSM/I data is even more spectacular since the three poor forecasts are all improved with rmse’s re-
duced by more than a factor of two.  

To the question: Is it better to have a small number of accurate rain rate observations (i.e. from TMI) 
than to have more observations but with a reduced accuracy (i.e. from SSM/I)? The answer from the 
above example is that it seems more beneficial to increase the number of observations because: (1) 
The accuracy of SSM/I and TMI are similar in the range of 0.1 mm/h to 5 mm/h corresponding to the 
maximum of the rainfall distribution. (2) Rather accurate TMI high intensity rain rates (by using the 
10 GHz channel) are probably not assimilated efficiently because the model physics at 40 km resolu-
tion can hardly produce instantaneous rain rates above 10 mm/h (therefore quality control will tend to 
reject such observations).   



4. Conclusions 

From the experience of ~20 years of rainfall retrieval algorithm development, the ’physical’ approach 
that is the Bayesian retrieval methodology applied to pre-defined databases from combined cloud-
radiative transfer modelling emerged as the most versatile technique. This is because it provides the 
largest detail on the microphysical precipitation structure and because it allows the calculation of theo-
retical retrieval errors. 

Comparing the errors obtained from different algorithms very similar features can be observed; how-
ever, there may be large differences comparing retrievals from spaceborne and airborne data due to 
beam-filling issues. In any case, systematic errors seem to be comparably small compared to random 
errors - this is a conclusion from the analysis of both airborne and spaceborne data. 

Once rainfall observations are assimilated, the spatial error correlation has to be taken into account 
because the observations must be averaged to represent the spatial model resolution. Rainfall rate as-
similation experiments with the ECMWF modelling system have shown that apart from the positive 
impact of the data on analyses and forecasts, the accuracy of the observations has to be traded off 
against the data coverage. Depending on the case, better coverage may compensate reduced accuracy. 
This will be an important research issue for future assimilation studies as well as algorithm design. 
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