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1. Introduction 

In data assimilation an updated analysis of the atmospheric state is obtained by combining current 
information, that is, the most recent observations, with background information provided by a short-range 
forecast. Effectively, the background carries forward in time some of the information obtained from earlier 
assimilated observations. In operational numerical weather prediction, errors in the background and in the 
observations are of similar magnitude (Simmons 2003, these proceedings), which means that the 
observations can quite accurately be predicted, based on the information in the background. The difference 
vector between the predicted and the actual observations provide the new information to the analysis – these 
differences are called innovations (Daley 1991). 

Innovations are non-zero either because of errors in the prediction or errors in the observations. The 
prediction errors are due to errors in the background (initial condition error) and to errors in the forecast 
model (model error). The observation errors depend on observation type, and is defined to include the errors 
of representativity. It is the job of the assimilation scheme to attribute the appropriate fractions of the 
innovations to the various error sources. This is done based on knowledge about the statistical characteristics 
of the errors involved, which is modelled and specified in the assimilation scheme. An accurate statistical 
model for the innovation error covariance is essential for good performance of any data assimilation scheme. 

In three-dimensional assimilation schemes (Optimum Interpolation and 3D-Var), the simplification is made 
that the temporal aspects of innovation modelling can be ignored. In that case the modelling of innovations 
consists in a background-error covariance model (Fisher 2003, these proceedings) and the specified 
observation error covariances, respectively. Their magnitudes determine the relative weight given to the 
observations and the background in the analysis. In four-dimensional assimilation schemes (EnKF, Evensen 
2003 and 4D-Var, Rabier 2003, these proceedings) the evolution of forecast error within the assimilation 
time window (12-hours in the ECMWF implementation, Bouttier 2001a) is accounted for. The modelled 
innovation covariance in that case incorporates the temporal variation. This enables effective assimilation of 
time-series of data (Järvinen et al. 1999), and data distributed frequently in time (Andersson et al. 2002). In 
the current study we investigate the temporal aspects of innovation covariances (Järvinen 2001) and compare 
actual innovation statistics with modelled innovation covariances within 4D-Var. We use hourly data from 
frequently reporting observing systems (aircraft, wind profilers, synop/ship and buoys) in regions with 
relatively uniform data coverage (North America, and North Atlantic). 

After a brief description of the incremental formulation of 4D-Var in the next section (Section 2) we 
recapitulate (in Section 3) some of the earlier results provided by Järvinen’s (2001) study of innovation time 
sequences. In Section 4 we describe innovation modelling within 4D-Var, focusing on the temporal aspects. 
Results from a comparison between actual and modelled innovations, for hourly data within the 12-hourly 
assimilation window, are presented in Section 5.  Results are discussed and conclusions drawn in Section 6. 

153 



ANDERSSON, E.: MODELLING THE TEMPORAL EVOLUTION OF INNOVATION STATISTICS 

2. Incremental formulation of 4D-Var 

The 4D-Var estimation problem is solved by minimising iteratively a cost function  with respect to the 
model state  at the time t  at the start of the assimilation window. In the incremental formulation (Courtier 

et al. 1994) the cost function is written in terms of increments 
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where the summation is over  sub-divisions (or time slots) of the assimilation time window. The length of 
each time slot was one hour (i.e. ) in the operational system before January 2002 when it was halved 
to 30 minutes ( ). The vector d  represents the innovations: 
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where  represents the observations. Note that the innovations are calculated using the non-linear 

observation operators, after propagating the model state to the time of the observations using the full non-
linear forecast model at high resolution. This ensures the highest possible accuracy for the calculation of the 
innovations which are the primary input to the assimilation. 

iy

For computational cost reasons the increments xδ  are calculated at a lower resolution than that of the full 
model. The current forecast model is run at T511 spectral truncation (corresponding to a 40 km resolution) 
whereas the analysis increments xδ  are evaluated at T159 (120 km). The analyses  at times 

 UTC are formed by adding the increments to the background fields: 
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3. Temporal evolution of innovations 

In the study by Järvinen (2001) the temporal evolution of innovations was investigated within ECMWF’s 3D 
and 4D-Var systems. North-American aircraft innovations for the period 1 September to 15 October 1997 
were processed in hourly bins. The de-correlation method of Hollingsworth and Lönnberg (1986) was used 
to separate out the two contributions, observation and background error, from the innovations. Figure 1 
shows the resulting hourly estimates of observation (cyan) and background errors (orange), alongside the 
specified values (blue and red, respectively), from a 6-hourly 3D-Var assimilation experiment (left) and 4D-
Var (right). The estimated observation error (cyan) appears to be independent of time and independent of 
assimilation method, as expected. In 3D-Var the valid time of the background is the mid-time of the 6-hour 
window. The timing error due to the difference between the hourly data and the background shows clearly in 
the curve for estimated background error (orange). In 3D-Var an attempt is made to compensate for this 
variation by specifying larger observation errors (blue) for the off-time data - however, the specified values 
appear too large. The specified background error (red marker) at +3 hours is in good agreement with the 
estimated value at the centre of the assimilation window. The results for 4D-Var (right) are distinctly 
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different in terms of the background-error estimate (orange). In 4D-Var the background is valid at the initial 
time of the assimilation window (Rabier et al. 2000). The forecast model is used to propagate the background 
to the observation times, which inevitably introduces prediction errors increasing in time. The figure shows a 
significant growth of prediction error over the 6-hour period. It was also pointed out by Järvinen (op. sit.) 
that 4D-Var clearly outperforms 3D-Var, as the 4D-Var background error estimates are significantly lower 
than those for 3D-Var. It is therefore inappropriate to specify the same background errors in 4D and 3D-Var, 
and we can see that the specified error is too large in 4D-Var. Based on these and related results, both 
observation error and background errors were adjusted (with operational implementation in June 2000) and a 
better agreement between estimated and specified errors was achieved.   
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Figure 1 Evolution of background and observation errors (see legend) within 3D-Var (left) and 4D-Var 
(right) with a 6-hour assimilation window, for North American aircraft wind component (ms-1) data. The 
estimated values (triangles) are obtained from actual innovation statistics for the period 1 September to 
15 October 1997, processed in hourly bins. Specified values (square markers) are also shown, and refer 
to ECMWF’s operational system in 1998. Adapted from Järvinen (2001).   

The growth of prediction error is not uniform. Järvinen (2001) showed that the error growth is quickest for 
wind errors near jet-level (200 hPa), and relatively slower and more uniform in the vertical for temperature. 
His figure is reproduced here as Figure 2, showing vertical profiles of error at the beginning (thick dashed) 
and end (thin dashed line) of the 6-hour 4D-Var assimilation window. [The estimated observation error (full 
lines) is near constant in time (as expected).] The rapid error growth for wind near the jet level is reminiscent 
of singular-vector growth (Buizza and Palmer 1995). Singular vectors are characterized by rapid transfer of 
energy from potential to kinetic, and vertical propagation from the lower to the upper troposphere, within the 
first 6-12 hours of forecasts, due to baroclinic instability. In singular-vector growth there is a gradual shift 
from small to synoptic scales (Buizza 1998), which is another salient feature of short-range forecast error 
evolution. 
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Figure 2 Vertical profiles of the background (dashed) and observation (sold line) error standard 
deviations at the beginning (thick) and end (thin line) of the 6-hour assimilation window, for aircraft 
component wind (top) and temperature (lower panel) data over North America, for the 4D-Var 
innovation sequence from 1 September to 15 October 1997. Reproduced from Järvinen (2001). 

4. Modelling of innovation statistics 

4.1. Error contributions 

As mentioned in the Introduction, and can be seen from Eq.(2), the innovation vector is the difference 
between the observations and the model-equivalents of the observations. Apart from the observation vector 
and the background atmospheric state this also involves the forecast model and the observation operators. 
Unfortunately all four components of the calculation of the innovation vector are associated with errors, as 
defined in Table 1.  

Table 1 Definition of errors (ε) contributing to the innovation error covariance. The hat-symbol indicates 
'true' values. 

Definition Expectation Name 

oˆ εyy +=  Oεε ˆ, T
oo =  Observation error 

bbb ˆ εxx +=  Bεε ˆ, T
bb =  Background error 

qT)(t0)(t ˆˆ εxx += ==M  Qεε ˆ, T
qq =  Model error 

f)t((t) ˆˆˆ εxx += HH  Fεε ˆ, T
ff =  Representativity error 
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The four error contributions combine in the expression for the innovation error covariance (Dee 1995). 
Neglecting cross-correlations between observation and background we have: 

FOHPHdd ˆˆˆˆˆ, TT ++= f  (4) 

with 

  (5) QMBMP ˆˆˆˆˆ T +=f

where  is forecast error,  is predictability error and Q  is model error. The ‘hat’-symbol 
indicates ‘true’ values, in contrast to modelled values written without ‘hat’ in the following. 

fP̂ Tˆˆˆ MBM ˆ

4.2. Simplifying assumptions 

In 4D-Var, as in any other data assimilation scheme, the error covariances are modelled approximately. 
Approximations are unavoidable given the large dimension of the matrices involved (of the order 107 H 107 
for B, Q and F and 106 H 106 for O). In the current ECMWF implementation of 4D-Var the following 
simplifying assumptions are made: 

• Cross-correlation between observation and background are neglected, 

• The observation errors are assumed un-correlated (diagonal O+F=R), except temporal correlation of 
surface pressure data (Järvinen et al. 1999) which, however, we will disregard in the following, 

• Zero model error (Q=0), that is, the perfect model assumption. Weak-constraint 4D-Var (i.e. Q…0) is 
also feasible (see Trémolet, 2003, these proceedings),   

• The background error covariance (B) is implemented as a chain of operators (Derber and Bouttier 
1999), which together define the background-term (Jb), (Fisher 2003, these proceedings), 

• The temporal evolution of the background-error covariance is provided by the tangent-linear (TL) 
forecast model (M), at lower resolution. The TL model may or may not include representation of 
diabatic processes (Mahfouf 1999; Janisková et al. 2002). In this study an adiabatic TL model at T95 
spectral triangular truncation was used,  

• The conversion from model variables to observed quantities is performed with the tangent-linear of 
the observation operators (H).   

In summary, for 4D-Var we have: 

 )(, TTT QRHHMBMdd ++= …  (5) 

In strong-constrant 4D-Var (e.g. ECMWF operations) Q=0.  In ensemble Kalman Filters (EnKF, 
Houtekamer 2003, these proceedings) a rank-n estimate of the first right-hand-side term in Eq.(5) is obtained 
from the sample of n innovations available from the n ensemble members. For 3D-Var systems (Courtier et 

al. 1998) Eq.(5) simplifies to RHBHdd += TT,  (neglecting the temporal evolution, i.e. M=I), and in 

Optimum Interpolation (Lorenc 1981), where only very simple observation operators are possible (pure 
linear, or linearized around climatology, rather than the tangent-linear H linearized around an accurate 
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background state), we have RBdd += o
T,

THHMBM

. In OI the background error covariance in terms of observed 

quantities ( ) is explicitly required (Lorenc 1986).  oB

χ
δx

Lχ

~xHMδ

(χ

(NLχ

)( (N HMLHMLχ

TH

Given a sufficiently large sample of innovations, the left-hand side of Eq.(5) can be computed – at least the 
diagonal elements, that is, the innovation variances. Provided the diagonal elements of the right-hand side 
can also be evaluated then the actual and the modelled innovation variances can be inter-compared. This is 
recognised as an important validation step for any assimilation scheme. An accurate data assimilation 
procedure must model the innovations accurately in order to give the correct weight to the various 
observational data types and to the background. In 4D-Var and EnKF the temporal aspects come into play, 
determining the relative weight given to data at various times within the assimilation window, and extracting 
the appropriate tendency information and advective wind information from time-sequences of data. The first 
term on the right-hand side of Eq.(5) is not required explicitly in 4D-Var and cannot easily be inspected. 
However, the randomisation method suggested by Fisher and Courtier (1995), which previously has been 
used to diagnose the background error in terms of observable quantities (Andersson et al. 2000), i.e. , 
has in this paper been extended to include the model M, thereby enabling Eq.(5) to be evaluated. The 

randomisation method for the term  is described hereafter. 

THBH

T

4.3. Computational aspects 

Due to its definition (Fisher 2003, these proceedings) the 4D-Var control-variable χ  is a standard 
multivariately normal quantity, i.e.: 

 ),0(~ INχ  (6) 

Any linear transformation of  is also a normally distributed variable, with a different covariance. In 

particular for the increment in model space ( χL= ), we have (by virtue of the definition of L ) 

 ),0(~ Bx Nδ=  (7) 

and for the increment in terms of the observed quantity at observation time 

 ),0( TTHHMBMN  (8) 

The covariances can be approximated through the following randomisation procedure: Generate a random 
sample of N vectors, , with zero mean and unit variance, then )( Nχ

  (9) )(T)() )( NNN I≡χ

  (10) )(T)() )( NN BL ≡χ

where  and  are rank-N approximations of the full matrices. Similarly a rank-N approximation of 
 is obtained by applying the operators L, H and M to each of the vectors : 

)( NI
T

)( NB
HMBM )( Nχ

  (11) 
)(TTT)( ) NN HHMBM≡χ

Which is equivalent to  
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For the purpose of this study we have evaluated Eq.(12) for a sample of N=100 vectors, accumulating 
variance contributions for the diagonal elements. The number of diagonal elements equal the total number of 
observations used in the current (October 2003) operational system, that is ~3,500,000 data. The uncertainty 
in the resulting individual variance estimates is ~7%. The randomisation error is however negligible for 
accumulated statistics as presented in the following section.  

5. Comparison between actual and modelled innovation time sequences 

Using Eq.(12) we now have a practical method to evaluate Eq.(5), which enables us to carry out comparison 
between actual and modelled time-sequences of innovation variances. A mismatch can be due to any of a 
number of factors: The specified observation and background errors may be wrong, the tangent linear 
forecast model may be deficient in representing error growth, the observations may be affected by influences 
not fully described by the observation operators or by gross errors, and finally the neglect of model error 
may be damaging. 

5.1. A fictitious example 

For a well-tuned four-dimensional data assimilation system we might expect something like the picture 
shown in Figure 3. Note that this is a fictitious example, for illustration only, shown here to aid the 
discussion of the real results shown hereafter. Based on Järvinen’s results (Section 3) the innovations (left) 
are expected to increase with time within the assimilation window (12 hours). The increase should ideally be 
matched (right panel) with a similar growth of forecast error, that is, predictability error (green) plus model 
error (red bars). The initial-condition error is represented by the green bar at time=0 in the right-hand panel. 
The observation error (light blue bars) provides a constant offset, independent of time. 
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Figure 3 Expected result for a well-tuned four-dimensional data assimilation system: fictitious data for 
illustration only. Innovation statistics (left, blue bars) are compared with modelled statistics (right). The 
bars represent standard deviations (i.e. square-roots of the diagonal elements) of R (light blue), 
R+HMBMH  (green) and R+HMBMH+Q (red), for each hour within the 12-hour assimilation window. 

5.2. Results for frequent data in 4D-Var 

A 4D-Var data assimilation experiment was carried out for the 6-day period from 12 UTC 20030205 to 12 
UTC 20030211, using the version of the ECMWF forecasting system that was undergoing pre-operational 
testing at the time (cycle 26r3), and became operational in October 2003. A wide range of conventional and 
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satellite data was used (Thépaut 2003, these proceedings; Thépaut and Andersson 2003) and in particular 
hourly surface pressure data (Järvinen et al. 1999), frequent wind profiler (Bouttier 2001b; Andersson and 
Garcia-Mendez 2002) and frequent aircraft data (Cardinali et al. 2003). The diagonal elements (the 
innovation variances) of the left and the right-hand sides of Eq.(5) were evaluated for all available data 
(~3,500,000 per 12-hour period), and aggregated by observation type and by geographical area. The most 
stable statistics were obtained from regions with relatively homogeneous data coverage for the frequently 
reporting data types. Results are shown for jet-level (200-300 hPa) u-component wind data over North 
America (Figure 4) and for surface pressure data in the North Atlantic (Figure 5). 

Figure 4 shows that the innovations (blue bars) clearly increase with time over the 12-hour period – more so 
for the sample provided by the wind-profiler network (top), than for the aircraft data (lower panels). The 
difference is most likely due to different sampling of the meteorological situation in the short study period, 
and the associated baroclinic and diabatic growth rates. The specified observation error (light blue) for both 
data types appear to be slightly over-estimated, as the observation error on its own is almost as large as the 
innovations are at time=0. The sum of initial condition error (green bar at time=0) and observation error is 
certainly overestimated, as this sum (in terms of variances) should equal the innovation variance at initial 
time. The most striking result is that the modelled forecast error evolution does not reproduce the error 
growth indicated by the innovations. In fact, for the first six or seven hours the modelled forecast error 
decreases, later followed by a weak increase. This result is surprising as it is expected that most of the error 
growth within the jet-level at mid-latitudes is due to baroclinic processes, which are well described by the TL 
forecast model.   
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Figure 4 Innovation statistics based on actual data (left, blue bars) are compared against 4D-Var 
modelled innovations (right), for u-component wind data 200-300 hPa from American wind profilers 
(top), and aircraft over North America (lower panels), 20030205-12 to 20030211-12. The bars represent 
standard deviations (i.e. square-roots of the diagonal elements, ms-1) of R (light blue) and HMBMH  
(green), for each hour within the 12-hour assimilation window. 

In Figure 5 we show a similar set of diagrams, but this time for surface pressure data in the North Atlantic. 
Again, there is a clear indication that the innovations (blue) gradually increase over the 12-hour period. The 
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modelled error evolution, however, is almost flat (or decreasing) for the initial three to four hours, followed 
by a slow gradual increase. The sum of observation error and initial condition error is overestimated which is 
seen through comparison with the innovations at time=0. The observation errors should certainly be reduced, 
especially for SYNOP/SHIP data at the intermediate hours (when most data come from accurate automatic 
stations).  
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Figure 5 As Figure 4 for surface pressure data (hPa) in the North Atlantic from DRIBU (drifting buoy) 
(top) and SYNOP/SHIP (lower panels).  

5.3. Discussion 

The results shown here may at first seem contradictory to those of Thépaut et al. (1993, 1996) and Järvinen 
et al. (1999) who, in certain case studies, have demonstrated that 4D-Var generates flow-dependent structure 
functions and amplifies the error variance through evolution of the background error covariance matrix. They 
have shown that larger weight is given to data in the vicinity of dynamically active synoptic weather systems 
(see also Cardinali et al. 2003, these proceedings). Their results confirm that the background-error 
covariance is modified by growing baroclinic modes, within the assimilation period. It is nevertheless 
plausible that the balance between growing and neutral/decaying modes is incorrectly modelled, which could 
explain the results shown here and at the same time be compatible with those earlier results. In 4D-Var the 
covariance of initial-condition error is provided by the B-matrix. The results shown here would suggest that 
the component of the variance in B that projects onto growing modes is underestimated or that the decaying 
modes are overestimated. The investigations performed so far are insufficient to be able to be conclusive on 
this assumption. 

There are other possibilities that could also explain the discrepancy between modelled and actual innovation 
evolution. One is that the tangent-linear forecast model could be deficient. In this study a low-resolution 
(T95) adiabatic TL model was used. It is possible that the inclusion of diabatic processes in the TL model 
(Janisková 2003, these proceedings) running at higher resolution (T159 or higher) will introduce more rapid 
and realistic growth rates. A third possibility is that model error is significant. It could be that the growth of 
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model error Q is not as shown schematically in Figure 3, but much faster during the first few hours of 
forecasts and then saturates. The attempts that have been carried out so far, trying to quantify the model-error 
contribution to innovation statistics, have been unsuccessful because the uncertainties in the estimations of R 
and B dominate. 

6. Conclusions 

In this study we have compared the temporal evolution of actual innovations against those modelled within 
the ECMWF 4D-Var data assimilation system. Järvinen (2001) had shown that especially the wind 
innovation variances at jet-level grow quickly within the assimilation period (6-hours in his study). We have 
confirmed Järvinen’s results for jet-level wind data over North America, and shown that also surface 
pressure innovations over the North Atlantic grow gradually over the assimilation period (12 hours in this 
study).  

We developed a method to diagnose the evolution of the background error covariance within 4D-Var, 
including the transformation to observation-space using the adiabatic tangent-linear forecast model at T95 
resolution and the tangent-linear observation operators. The method enables hourly comparison between the 
actual innovations and those modelled by 4D-Var. The comparison showed that there is an initial period of 
about 3-6 hours in which the modelled forecast error variance evolution either decreases or is near-constant 
in time, in clear contrast to the actual innovations. Later in the assimilation period (between 6 and 12 hours) 
the covariance evolution is showing error-growth, in better agreement with the innovations. 

There are three possible explanations for the discrepancy: 

1. The projection of the background-error covariance matrix onto the growing modes of the model is 
too small, or the projection on decaying modes is too large. Background error covariance models that 
explicitly assign a variance spectrum to the modes of the linear model have been constructed 
(Phillips 1986; Žagar et al. 2003). This approach is suitable for simplified linear models but less 
practical for primitive-equation models, especially if the domain extends into the upper stratosphere 
which is the case for the ECMWF model. Other approaches to include flow-dependent baroclinic 
structures into the B-matrix are discussed by Fisher (2003, these proceedings) and Fisher and 
Andersson (2001). 

2. The low-resolution (T95) adiabatic tangent-linear model used in this study might be deficient in its 
representation of perturbation growth. Moist physical processes evolve much faster than baroclinic 
processes (Errico 1997) and may contribute significantly to perturbation growth within the first few 
hours of forecasts. Error-growth at scales beyond T95 would also contribute. In the final 
minimisation step of 4D-Var a diabatic tangent-linear model is used at T159 resolution, and 
parameterisations of moist physical processes are being incorporated (Janisková 2003, these 
proceedings). The impact of higher-resolution and the use of a diabatic TL model on the diagnostics 
presented here should be investigated. 

3. The neglect of model error. Little is known about the magnitude and evolution of model error within 
the 12-hour assimilation window. It could be that model error grows very rapidly within the first few 
hours of forecasts and then saturates, which could at least partly explain the discrepancy seen here. 

Other results of this study relate to error specification at initial time, that is B and R. From the small selection 
of results shown here it appears that specified observation errors for several observation types are too large, 
and should be reduced. Smaller observation error should be assigned to SYNOP/SHIP surface pressure data 
at intermediate hours (automatic stations) than at the synoptic hours (presumably manual stations). 
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