
IFS Documentation Cycle CY25r1

ent)
IFS DOCUMENTATION

PART V: T HE ENSEMBLE PREDICTION

SYSTEM (CY25R1)
(Operational implementation 9 April 2002)

Edited by Peter W. White

(Text written and updated by members of the ECMWF Research Departm

Table of contents

Chapter 1. Theory

Chapter 2. Computational details

REFERENCES
1

IFS Documentationn Cycle CY25r1 (Edited 2003)



Part V: ‘The ensemble prediction system (CY25R1)’

e Eu-

her than

in this

ecasts
Copyright

© ECMWF, 2002.

All information, text, and electronic images contained within this document are the intellectual property of th

ropean Centre for Medium-Range Weather Forecasts and may not be reproduced or used in any way (ot

for personal use) without permission. Any user of any information, text, or electronic images contained with

document accepts all responsibility for the use. In particular, no claims of accuracy or precision of the for

will be made which is inappropriate to their scientific basis.
2

IFS Documentation Cycle CY25r1 (Edited 2003)



IFS Documentation Cycle CY25r1

, given

a set

h

andom

rbing the

und the

prob-

r fore-

ion

f

Part V: T HE ENSEMBLE PREDICTION SYSTEM

CHAPTER 1   Theory
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1.1 INTRODUCTION

The ensemble prediction system (EPS) is a technique to predict the probability distribution of forecast states

a probability distribution of random analysis error and model error. More specifically, the operational EPS is

of (50) integrations of a lower resolution (TL255) version of the operational model from initial conditions whic

are constructed by adding small dynamically active perturbations to the operational analysis for the day. R

model errors due to physical processes and subgrid-scale effects are represented by stochastically pertu

tendencies of parameterized physical processes. In situations where the ensemble is tightly distributed aro

operational integration, this forecast can be thought of as very likely to occur. More generally, the EPS gives a

ability forecast of some given flow type, or some given category based on temperature, precipitation or othe

cast variable.

Figure  1.1   A schematic illustration of the growth of an isopleth of the forecast error probability distribut

function, from (a) initial phase, to (b) linear growth phase, to (c) nonlinear growth phase, to (d) loss o

predictability. See text for further details.
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Fig. 1.1 shows a schematic illustration of the phase-space evolution of the probability distribution function (

of analysis error throughout the forecast range. A specific isopleth (e.g. the 1 standard deviation isopleth)

trated. It is assumed that at initial time the distribution is normal along each phase-space direction. At initia

(Fig. 1.1(a)), the isopleth is shown as isotropic, i.e. bounding an -sphere, where is the dimension of

space for the ECMWF operational forecast model). In general, this error will not be isotropic—ana

error is likely to be larger along directions which are less well observed, and vice versa. However, it is straig

ward to define an inner product on phase space, with respect to which the initial probability density function

is isotropic. This inner product, defined from the analysis error covariance matrix, is fundamental in the the

singular vectors below.

In the early part of the forecast, error growth is governed by linear dynamics. During this period an initially s

ical isopleth of the PDF will evolve to bound an -dimensional ellipsoidal volume (Fig. 1.1(b)). The major axis

of the ellipsoid corresponds to a phase-space direction which defines the dominant finite-time instability

part of phase space (relative to the analysis error covariance metric). The arrow shown inFig. 1.1(b) points along

the major axis of the ellipsoid. It can be thought of as evolving from the arrow shown inFig. 1.1(a). Note that the

arrows inFigs. 1.1(a) and (b) are not parallel to one another. This illustrates the non-modal nature of linear p

bation growth.

The arrows at initial and forecast time define the dominant singular vector at initial and final time (with resp

the analysis error covariance metric). At forecast time, the dominant singular vector defines the dominant

vector of the forecast error covariance matrix. SeeSection 1.2.1 for more details.

The growth of the (isopleth of the) PDF betweenFigs. 1.1(b) and (c) describes a nonl inear evolution of the PD

In Figs. 1.1(c) the PDF has deformed from its ellipsoidal shape inFigs. 1.1(b). The nonlinear deformation will

cause the PDF to evolve away from a normal distribution. Put another way, in the nonlinear phase, the PDF

give direction is partially determined by perturbations which, in the linear phase, were orthogonal to that dire

Finally, Fig. 1.1(d) shows (schematically) the situation where the evolved PDF has effectively become ind

guishable from the system's attractor, so that all predictability has been lost.

The number of degrees of freedom of the operational ECMWF model is (very) much larger than the larges

ticable ensemble size. This raises the question of whether any particular strategy is desirable in sampling th

PDF. If initial errors can occur independently in all the phase-space directions, then a strategy of random

sampling could lead to an EPS whose reliability was poor, especially for cases of small ensemble spread.

ticular, if the spread from a randomly under-sampled ensemble was found to be small on a particular occasi

could either be because the flow was especially predictable, or because the ensemble perturbations poorl

the unstable subspace in which the analysis error lay. From a credibility perspective, it is important to try to

mize the latter type of occurrence.

An alternative strategy is to base the perturbations on the singular vectors. Clearly, by focusing on the u

subspace, the cases of small spread being associated with large forecast error should be minimized, at le

linear and weakly nonlinear range. In addition to this, there are five related reasons why the initial perturbati

the ECMWF EPS are based on the dominant singular vectors.

Firstly, as shown byRabieret al. (1996), the sensitivity of day-2 forecast error to perturbations in the initial st

projects well into the space of dominant singular vectors.Rabieret al. have shown that cases of severe foreca

failure can be dramatically improved if the analysis is modified using the sensitivity perturbations.

Secondly, provided the metric or inner product for the singular vectors is an accurate reflection of the analys

covariance matrix then, as mentioned, the evolved singular vectors point along the largest eigenvectors of t

cast error covariance matrix. As such (seeEhrendorferand Tribbia,1997), perturbations constructed from th

dominant singular vectors represent the most efficient means for predicting the forecast error covariance

n n
O 10( 7( )

n
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given a pre-specified number of allowable tangent model integrations.

Thirdly, singular vector perturbations may provide a relatively efficient means of sampling the forecast erro

in the nonlinear range, particularly during transitions in weather regimes. For example,Mureauet al. (1993) have

shown a case where the singular vector perturbations were successful in capturing a major transition to bl

where random perturbations were inadequate.Gelaroet al. (1998) have documented further such cases. A mo

systematic study of the ability of ensembles to describe the probability of regime transitions in the weakly non

forecast range has been made byTrevisanet al.(1998) using an intermediate-complexity model of the extratropic

circulation. Relatively small ensembles initialised using firstly singular vectors, and secondly local Lyapunov

tos, were compared with a large Monte-Carlo ensemble based on random perturbations. It was found tha

ensemble spread from the singular-vector ensemble was a reliable indicator of small ensemble spread f

Monte-Carlo ensemble. By contrast, small ensemble spread from the Lyapunov-vector ensemble was a m

reliable indicator of small spread from the Monte-Carlo ensemble.

Fourthly, in practice the initial PDF is only poorly known. Hence it is difficult to even define a truly random in

sampling.

Fifthly, from a purely pragmatic point of view, it would seem to be wasteful to integrate explicitly those pertu

tions that are likely to grow slowly, and thus resemble the control forecast. Such perturbations can be imp

taken into account in constructing a forecast PDF, by increasing the weight given to the control forecast rela

the perturbed forecasts.

At present, the EPS is based on the notion that forecast uncertainty is dominated by error or uncertainty in th

conditions. This is consistent with studies that show that, when two operational forecasts differ, it is usually

ences in the analyses rather than differences in model formulation that are critical to explaining this differen

addition, random model errors due to physical parameterizations and the effects of subgrid-scale processes

resented by stochastic perturbations of the physical tendencies of the model, seeBuizzaet al.(1999). The physical

tendencies are multiplied with a random number between 0.5 and 1.5. Each ensemble member uses a diff

alization of this random number. The same perturbation is applied in a tile of 10 degrees latitude and 10 d

longitude over a period of 6 hours. The ratio of spread associated with initial error and model error can be tu

the ratio of the influence of initial and model error obtained from studies of divergent operational forecasts

Each EPS perturbation is a linear combination of the computed singular vectors. This is done so that a giv

turbation covers as much of the Northern and Southern hemisphere as possible. The amplitude of the pert

is then defined after comparison with the statistics of analysis error. These processes are described inSection 2.2.

The EPS was first implemented operationally in 1992 (Palmeret al.,1993). A general description of the ECMWF

EPS is described inMolteni et al. (1996). The singular vector computations are described inBuizzaand Palmer

(1995), andBarkmeijer et al. (1998, 2001).

1.2 SINGULAR VECTORS

1.2.1  Formulation of the singular vector computation

One way to define singular vectors is by means of a maximization problem. The scalar which has to be max

can be written as:

(1.1)
EMx,Mx[ ]

Dx,x[ ]
----------------------------
3
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where denotes the Euclidean inner product, , and and are positive definite o

ators. The operator is the propagator of the tangent model. It assigns to a particular vector the linearly e

vector for a given forecast time and with respect to a reference trajectory. Hence, the scalar defined b(1.1)

is the ratio between the -norm of the evolved vector and the -norm of at initial time. Notice that the

at initial and final time may differ. The leading singular vector has the property that it maximizes the scala

second singular vector maxizes the scalar in the space -orthogonal to the leading singular vector, and s

In this way, one obtains a set of singular vectors which are -orthogonal at initial time and -orthogonal a

time. The actual computation of the singular vectors in the IFS is done by solving an equivalent eigenvalue

lem. Observe that the solutions of the maximization problem(1.1)also satisfy the following generalized eigenvalu

problem(1.2).

(1.2)

where is the adjoint of . The defining equation(1.2)can be generalized by activating operators in the s

gular vector computation, seeSection 1.2. It is, for instance, possible to set the state vector to zero outside a

scribed area at optimization time, by using a projection operator . Consequently, the growth of singular v

outside the target area is not taken into account in the actual computation. In using this projection operator

genvalue problem(1.2) becomes . To keep the notation as simple as possible, these a

tional operators will be left from the basic eigenvalue problem(1.2).

The operator determines the properties by which the singular vectors are constrained at initial time. As s

can be interpreted as an approximation of the inverse of the analysis error covariance matrix . Currently

are two methods to compute singular vectors, depending on the form of . Both methods will be discus

Sections 1.2.2 and1.2.3.

1.2.2  Use of the total energy norm

When using the total energy norm, or any other simple operator, at initial time, the generalized eigenvalue p

(1.2) can be simplified to an ordinary eigenvalue problem. In this case the -norm of  reads as

(1.3)

where and stands for the vorticity, divergence, temperature, specific humidity and logarith

the surface pressure component of the state vector , and is the specific heat of dry air at constant p

is the latent heat of condensation at , is the gas constant for dry air, is a refer

temperature and = 800 hPa is a reference pressure. The parameter defines the relative weight give

specific humidity term.

Since the operator is a diagonal matrix, one can easily define a matrix so that . Multiplying

sides of(1.2) to the left and right with , yields the equation

(1.4)

,[ ] x y,[ ] xi yi( )
i

∑= D E
M x

Mx
E x D x

D
D E

M * EMx λDx=

M * M

P

P* M * EPMx λDx=

D
Pa

D

D x

x Dx,[ ] 1
2
--- ∆ 1– ζx.ζx ∆ 1– Dx.Dx+

cp

T ref
---------Tx

2 wq
Lcond

2

cpT ref
---------------qx

2++
 
 
 

Σ
∫

0

1

∫=

+
1
2
---

Σ
∫ RdryT refPref π2dΣln

dΣ ∂p
∂η
------ dη

ζx Dx Tx, , πxln

x cp

Lcond 0°C Rdry T ref 300K=

Pref wq

D C C2 D 1–=

C

CM * EMCx λX=
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which can be solved using the Lanczos algorithm, see AppendixSection A.1. The energy metric is believed to be

a first-order approximation to the analysis error covariance metric (Palmeret al. 1998).

1.2.3  Use of the Hessian of the 3D-Var objective function

In the incremental formulation of 3D-Var, the Hessian of the objective function can be used as an appro

tion of the inverse of the analysis error covariance matrix. The objective function has the form

(1.5)

and the increment where attains its minimum, provides the analysis which is defined by adding

the background

(1.6)

The operators and are covariance matrices of the background and observation error respectively and

innovation vector

(1.7)

where is the observation vector and is a linear approximation of the observation operator in the vicin

.

The Hessian  of the objective function is given by

(1.8)

Provided that the background error and the observation error are uncorrelated, with th

state of the atmosphere, the Hessian is equal to the inverse of the analysis error covariance matrix

follows by noting that the objective function is quadratic and attains its unique minimum at and consequ

by using(1.6),

(1.9)

Rewriting(1.9) gives

(1.10)

Using the assumption that the background and observation error are uncorrelated the above equation imp

(1.11)

By now multiplying each side of(1.11) to the right with its transpose, the desired result follows.

The defining eigenvalue problem for the singular vectors becomes

(1.12)

ℑ

ℑ δx( ) 1
2
---δxTB 1– δx

1
2
--- Hδx d–( )TR 1– Hδx d–( )+=

δxa ℑ xa δxa

xb

xa xb δxa+=

B R d

d yo Hxb–=

yo H
xb

∇∇ℑ

∇∇ℑ B 1– HTR 1– H+=

xb xt–( ) yo xt–( ) xt

∇∇ℑ Pa

δxa

B 1– xa xt– xb xt–( )–[ ] HTR 1– H xa xt–( ) Hx t y–+[ ]+ 0=

B 1– HTR 1– H+( ) xa xt–( ) B 1– xb xt–( ) HTR 1– Hx t y–( )–=

B 1– HTR 1– H+( )Pa B 1– HTR 1– H+( )
T

B 1– HTR 1– H+( )
T

=

M*EMx λ∇∇ℑx=
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Since the objective function is quadratic in the incremental formulation, the Hessian in(1.12)can be eval-

uated by computing the difference between two gradients: . The generalized e

value problem(1.12) is solved by using the Jacobi–Davidson algorithm, see AppendixSection A.2.

APPENDIX A E IGENVALUE ALGORITHMS

A.1 THE LANCZOS ALGORITHM

Algorithms based on Lanczos theory are very useful to solve an eigenvalue problem when only a few of the e

eigenvectors are needed. It can be applied to large and sparse problems. The algorithm does not acces

the matrix elements of the operator that defines the problem, but it gives an estimate of the eigenvectors

successive application of the operator.

Consider the eigenvalue problem

(A.1)

where the matrix is dimensional, and symmetric. Without loss of generality, we can also suppos

it is real.

If  is a real, symmetric matrix, then there exists an orthogonal real matrix  such that

, (A.2)

where  is a diagonal matrix, and  denotes the transpose of (Schur decomposition theore

The Lanczos algorithm does not directly compute the diagonal matrix , but it first computes a partial tra

mation of the matrix  using a tridiagonal matrix

, (A.3)

with

, (A.4)

and with

(A.5)

where the vectors are column vectors, and where the number of iterations is much smaller than the di

∇∇ℑx
∇∇ℑx ∇ℑ x xb+( ) ∇ℑxb–=

Ax σi
2x=

A N N×

A Q

QTQAQ D λ1( ) … λN, ,( )=

D λ1 … λ2, ,( ) QT Q

D
A T

QTAQ T=

T

α1 β2 0 . . . .

β2 α2 β3 0 . . .

0 β3 . . . . .

. 0 . . . 0 .

. . . . . βJ 1– 0

. . . 0 βJ 1– αJ 1– βJ

. . . . 0 βJ αJ

=

Q q1 … q j, ,[ ]=

q j J
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. (A.6)

The elements of the diagonal matrix are an estimate of the eigenvalues of , and an estimate of the eigen

are given by , with

, (A.7)

The actual computation is performed by writingEq. (A.3) as

. (A.8)

Equating columns ofEq. (A.8), it follows that

(A.9)

for . The orthogonality of the vectors  implies that

. (A.10)

Moreover, if

(A.11)

is non-zero, then

, (A.12)

where . An iterative application of these equations, with a randomly chosen starting vector

defines the Lanczos iterative procedure. The total number of iterations determines the accuracy of the

tation. As this number increases, more eigenvalues/eigenvectors can be separated from the others, indep

from the choice of the starting vector . This separation starts from the boundaries of the eigenvalue spe

The accuracy of the eigenvectors is less than the accuracy of the singular values, say to order when the p

of the singular values is of order .

The reader is referred toGoluband van Loan(1983) for a theoretical description of the Lanczos algorithm. T

Lanczos code is available in NAG issue 17.

A.2 THE JACOBI –DAVIDSON ALGORITHM

The generalized eigenproblem

(A.13)

is usually handled by bringing it back to a standard eigenproblem

J N« T

T STDS=

D A
Y y1 … y j, ,[ ]=

Y QS=

AQ QT=

Aq j β j 1– q j 1– α jq j β jq j 1++ +=

j 1 J,= q j

α j q j
TAq j=

r j A α jI–( )q j β j 1– q j 1––=

q j 1+

r j

β j
-----=

β j r j r j;〈 〉±= q1

J

qT

ε
ε2

Ax λBx=
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The matrix is in general nonsymmetric, even if both and are symmetric. However, if is symm

and positive definite, the -inner product is well defined. The matrix is symmetric in this inner produ

 is symmetric:

. (A.15)

The proposed method to solve(A.14) constructs a set of basis vectors of a search space , c.f. the Lan

method. The approximate eigenvectors are linear combinations of the vectors . The classical and most

choice for the search space , for instance utilized in the Lanczos method, is the so-called Krylov subspa

space spanned by the vectors

(A.16)

This -dimensional subspace is denoted by . The vector is a starting vector that has to be c

The Krylov subspace is well suited for computing dominant eigenpairs since the vector points

and more in the direction of  the dominant eigenvector of  for increasing .

Given a search space , the approximate eigenpair of(A.15) is a linear combination of the basis vector

of :

. (A.17)

A suitable criterion for finding an optimal pair is the Galerkin condition that the residual

(A.18)

is -orthogonal to the search space to .  Hence

(A.19)

and consequently, using(A.19),

(A.20)

Note that the resulting eigenproblem is of the dimension of the search space, which is generally much smal

of the original problem. The basis vectors are usually orthogonalized so that Approximate e

pairs that adhere to the Galerkin condition are called Ritz pairs.

It can be shown that the residuals form a -orthogonal basis for when the app

mate eigenpairs are computed according to (1.37).

A.3 SOLUTION METHOD

As was stated before, the natural search space for the generalized eigenvalue problem is the Krylov s

. This basis can be generated by expanding the basis by new residual vectors. The problem

B 1– Ax λx=

B 1– A A B B
B B 1– A

A

w B 1– Av,[ ]B Bw B 1– Av,[ ] w Av,[ ] Aw v,[ ] B 1– Aw v,[ ]B= = = =

V ν
V

ν

v B 1– Av B 1– A( ),,
2
v,… B 1– A( )

i 1–
v

i K i v B 1– A,( ) v
B 1– A( )

i 1–
v

B 1– A i

ν θ u,( )
ν

u Vy=

r B 1– Au θu– B 1– AVy θVy–= =

B ν

VTBr 0.=

VTAVy θVTBVy– 0.=

VTBV 1.=

r 1 r 2 … r i, , , B K i r 1 B 1– A,( )

K i v B 1– A,( )
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construction of a basis for this space is that operations with are needed. Since in our application the inv

is not known explicitly, its action is approximated by the Conjugate Residual method (CR). To compute th

tor

(A.21)

one iteratively solves the system

(A.22)

Iterative solution methods require, apart from vector operations, only multiplications with . The vector c

principle be determined to high accuracy. This, however, may require many multiplications with and henc

be very expensive. Therefore, the action of is approximated to low accuracy, by performing only a few

with an iterative solution method. The number of iterations is controlled by NINNER. The subspace genera

this way is not a Krylov subspace and the basis vectors are not the residuals(A.19) but only approximations to it.

As a consequence they are not perfectly -orthogonal. This has to be done explicitly.

The complete algorithm can be summarized as follows.

• Choose a starting vector

• Compute ,B-normalize

• Repeat the following 7 steps NITERL times

1) compute

2) Solve small eigenproblem

3) Select Ritz value  and

4) Compute Ritz vector  and residual

5) Compute approximately   with the CR-method

6) B-orthonormalize new  against

7) Expand  with the resulting vector

The matrix contains the basis for the search space, the vector contains the new basis vector and

approximate eigenpair. In step 3 the pair with the largest is selected because the dominant part of the sp

is only of interest. However, if the eigenpair approximation reaches a certain accuracy (XKAPA in nam

NAMLCZ), i.e., , a smaller is selected. In step 5 a few CR steps are performed to app

imate the action of . In step 6 the Modified Gram–Schmidt procedure is used for reasons of numerical st

For a more detailed descripton of the Jacobi–Davidson algorithm the reader is referred toSleijpenand van der Vorst

(1996)

B 1–

B

r B 1– r̃=

Br r̃=

B x
B

B 1–

B

v
Bv v

AV V TAV,
VTAVy θy=

θ y
u Vy= r̃ AVy θBVy–=

v B 1– r̃=

v V
V

V v u θ,( )
θ

ε
r̃ Au θBu ε≤–= θ
B 1–
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Part V: T HE ENSEMBLE PREDICTION SYSTEM

CHAPTER 2   Computational details

Table of contents

2.1 The singular vector code

2.1.1 Set-up routines

2.1.2 Main routines

2.2 Calculation of initial perturbations

2.3 Unperturbed analysis retrieval

2.4 Analysis error estimate retrieval

2.5 Generation of initial perturbations

2.5.1 Extratropical perturbations

2.5.2 Tropical perturbations

2.6 Generation of the perturbed initial conditions

2.7 Nonlinear integrations of the control and of the perturbed forecasts

2.1 THE SINGULAR VECTOR CODE

The singular vector computation is called fromCUN3 in CNT0 or from CUN2 in CUN1, depending on whether

the Hessian of the objective function is used or not. General routines related to the singular vector comp

can be found in the directory ‘sinvect’. The technical routines needed for the Lanczos or Jacobi–Davidson

rithm are contained in the directory ‘lanczos’ of IFSAUX.

2.1.1  Set-up routines

Details of the set-up routines are given inTable 2.1.

TABLE 2.1 CONSTANTS IN NAMELIST NAMLCZ CONTROLLING THE SINGULAR VECTOR COMPUTATION.

NAME TYPE PURPOSE DEFAULT

LANCZOS LOGICAL Activates singular vector computation with Lanczos algo-
rithm (NCONF=601)

TRUE

LJACDAV LOGICAL Activates singular vector computations with Jacobi–David-
son algorithm (NCONF=131)

FALSE

LOCNORM LOGICAL Switch to localize norm computation in grid space TRUE

ALAT1 REAL

NW corner of  local area (defined by point 1)

30

ALON1 REAL 359.5




11
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2.1.2  Main routines

The defining equation(1.2) for the singular vectors takes the form

(2.1)

The routine OPM is the identity in case a simple energy norm is used at initial time, or it is equal to the Hess

the 3D-Var objective function. In the routine OPK, the propagators of the tangent and adjoint model are eva

Depending on the setting of the constants in NAMLCZ, additional operators may be active, such as SPTRL

when LSPTRLC0=TRUE. It truncates the state vector in spectral space by setting all harmonic coefficien

total wavenumber smaller than NWTRMIN0, or larger than NWTRMAX0, to zero at initial time.

ALAT3 REAL

 SE corner of  local area (defined by point 3)

90

ALON3 REAL 0

NLEVMIN INTEGER Minimum level of local area 1

NLEVMAX INTEGER Maximum level of local area NLEVG

LSPTRLC0 LOGICAL Switch to truncate in spectral space at initial (0) time FALSE

LSPTRLC1 LOGICAL Switch to truncate in spectral space at  final (1) time FALSE

NWTRMIN0(1) INTEGER Spectral coefficients with total wavenumber outside
window are set to zero

0

NWTRMAX0(1) INTEGER NXMAX

LNEWNORMT0 LOGICAL Switch to re-define the norm at initial time FALSE

NEWNORMT0 INTEGER Re-defines initial norm
1: total energy
2: kinetic energy
3: vorticity squared
4: stream function squared
5: rotational kinetic energy

1

NITERL INTEGER Maximum number of Lanczos or Jacob–Davidson inner
iterations

70

NINNER INTEGER Number of Jacobi–Davidson inner iterations 2

NJDSTOP INTEGER Value of NSTOP when LJACDAV=TRUE 144

LEVOLC LOGICAL Switch to evolve singular vectors TRUE

NEIGEVO INTEGER Number of singular vectors to evolve 35

NLANTYPE INTEGER Determines type of singular vectors
1: energy type norms are used
2 and 3: obsolete
4: same as 1 but now NCONF = 131
5: Hessian is used at initial time
6: for computing eigensystem of the Hessian

1

The routine SULCZ defines the constants as listed inTable 2.1 and determines the configuration of
the singular vector computation.

TABLE 2.1 CONSTANTS IN NAMELIST NAMLCZ CONTROLLING THE SINGULAR VECTOR COMPUTATION.

NAME TYPE PURPOSE DEFAULT





OPK x( ) λOPM x( )=
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2.2 CALCULATION OF INITIAL PERTURBATIONS

For a description of the evolution of the ECMWF Ensemble Prediction System (EPS) the reader is referred tMol-

teniet al.(1996) andBuizzaet al.(1998, 1999, 2002). As mentioned in the previous Sections, for each initial d

an ECMWF ensemble comprises one 'control' forecast, which is a forecast started from the operational a

and perturbed forecasts. The initial conditions for the perturbed integrations are constructed by addi

subtracting to the operational analysis orthogonal perturbations defined as linear combinations of

ropical singular vectors. In addition, tropical perturbations are added, which are constructed by Gaussian sa

of the leading diabatic singular vectors; seeBarkmeijeret al. (2001). The latter perturbations are designed to pe

turb the tracks of tropical cyclones (Puri et al. 2001). At the time of writing (December 2002), .

The methodology used in the Ensemble Prediction System to define these linear combinations in the extra

is a modification of the procedure described inPalmeret al.(1993). Its aim is to create perturbations which cove

most of the Northern and Southern Hemisphere, and have an amplitude comparable (in any region) to the e

of root-mean-square analysis error provided by the ECMWF data assimilation procedure.

The generation of the ensemble initial perturbations is compounded of 5 steps:

(i) retrieval from the ECMWF MARS archive of the unperturbed analysis (mc/sv/inidata);

(ii) retrieval from the ECMWF MARS archive of the estimate of analysis error (mc/sv/getea);

(iii) generation of initial perturbations: selection of extratropical singular vectors, phase-space rot

and scaling of perturbations to analysis error; Gaussian sampling of diabatic singular vectors

tropics (mc/sv/rot);

(iv) generation of the perturbed initial conditions: spectral expansion and vertical interpolation of in

perturbations, and addition of the initial perturbations to the unperturbed analysis (mc/sv/pert

(v) non-linear integrations starting from unperturbed (mc/fc/cf/control) and perturbed initial condit

(mc/fc/pf/nn);

Hereafter a brief description of each step is reported. The singular vectors’ resolution is T42L40, and the m

resolution is where the subscript denotes a linear grid; this is the operational configuration

time of writing (December 2002), seeBuizzaet al.(2002) for a description of the benefits of increasing the spat

resolution for the EPS.

2.3 UNPERTURBED ANALYSIS RETRIEVAL

This task (mc/sv/inidata) retrieves from the ECMWF MARS archive the unperturbed analysis at full resolu

2.4 ANALYSIS ERROR ESTIMATE RETRIEVAL

This task (mc/sv/getea) retrieves the estimate of analysis error from the ECMWF MARS archive . At the ti

writing (December 2002), three variables (temperature and the two horizontal wind components) are retrie

five model levels (30, 34, 39, 44, 49) on a  latitude/longitude grid.

2.5 GENERATION OF INITIAL PERTURBATIONS

This task (mc/sv/rot) generates the initial perturbations.

Nens

Nens 2⁄

Nens 50.=

TL255L40, L

6° 6°×
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2.5.1  Extratropical perturbations

The first step is the selection of singular vectors among the ones computed (seeSection 1.2). The selection

(comp_rotmat) proceeds as follows:

(i) The first 4 singular vectors are always selected;

(ii) For each singular vector a localization function is defined in three-dimensional grid-point sp

equal to 1 wherever the local energy (per unit mass) of the singular vector field is greater than

its maximum value over the grid and 0 elsewhere;

(iii) An overlap function is defined at each point as the sum of localization functions of the first

singular vectors. In general, the overlap function gives the number of selected singular ve

which 'cover' any grid point;

(iv) Each subsequent singular vector (from the 5th onwards) is examined in turn, and is selected

more than half of its total energy lies in regions where the current overlap function is less than

this is the case, the localization function for the new singular vector is used to update the ov

function.

Step(iv) is repeated until singular vectors are selected. The final overlap function gives the numb

singular vectors with at least 1% of their maximum local energy (i.e. 10% of their maximum amplitude) at an

cation.

Once singular vectors have been selected, an orthogonal rotation in phase space and a final re-sc

performed to generate the ensemble perturbations. If is the matrix whose columns are the selected singu

tors, is an orthogonal matrix and is a diagonal matrix of scaling factors. The ma

 containing the ensemble initial perturbations is computed by first defining

(2.2)

and then:

 . (2.3)

Let be one of the orthonormal perturbations defined byEq. (2.2), in terms of the zonal and

meridional wind and temperature, respectively. Moreover, let be the estimates of root-mean-s

analysis error for these variables.  The continuous function

 , (2.4)

where the overbar represents a mean over the grid-point space, gives an estimate of the maximum local

tween the perturbation amplitude and the estimated analysis error.

The rotation matrix  is defined in such a way to minimise the cost function

. (2.5)

SinceCF is not a simple quadratic function of the independent variables, the minimization cannot be redu

the solution of a linear problem. Instead, we perform the minimization iteratively by constructing as the pr

of a series of  elementary rotation matrices.

Nens 2⁄

Nens / 2

Nens 2⁄
V

R Nens 2⁄( ) Nens 2⁄( )× D
P

P′ VR=

P P′D=

p′i ui′ v′i T′i, ,( )=

eu ev eT, ,

f i ui' eu⁄( )8 vi' ev⁄( )8 T'i eT⁄( )8+ +[ ]
1 8⁄

=

R

CF f i
2

i 1=

Nens

∑=

R
2 2×
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In practice, the purpose of the phase-space rotation is to generate perturbations which have the same globa

aged energy as the ‘original' singular vectors, but have a smaller local maximum and a more uniform spatia

bution. The iterative algorithm has proved effective in performing this task, despite the fact that the h

nonlinear nature of the cost function may generate more than one minimum in phase space.

Once the rotation has been performed, the perturbations are re-scaled in order to have a realistic local am

The non-null elements of the diagonal matrix  inEq. (2.3) are given by:

, (2.6)

where is a constant factor which represents the maximum acceptable ratio between perturbation amplitu

analysis error. On the basis of the comparison of the average divergence of a generic ensemble member

control forecast (ensemble spread), and of the average divergence of the control forecast from the verifying a

(control forecast error) the current value  is now .

From the first quarter of 1998 onwards, also linearly evolved singular vectors are used in the generation o

perturbations. First, two sets {pi} and {epi}, each consisting ofNens/2 perturbations, are determined based on initi

singular vectors and linearly evolved singular vectors of two days before respectively. Both sets are cons

using the above described method with . The actual extratropical ensemble perturbations {xi} are defined

by adding perturbations from each set:

The perturbations of the initial conditions in the extratropics consist of symmetric plus/minus pairs. Consid

the th initial perturbation, with , , the initial condition of ensemble forecast is construc

ed byaddingthe th initial perturbation to the analysis, whilst the initial condition of ensemble forecast is c

structed bysubtracting the th initial perturbation to the analysis.

2.5.2  Tropical perturbations

Initial EPS perturbations in the tropics are included since cycle 24R3 (introduced operationally in January

The perturbations are generated for target areas by Gaussian sampling of leading diaba

gular vectors for each area. The Caribbean (0˚-25˚N and 100˚-60˚W) is always target area, as is every tropic

of category larger than 1 between 25˚N and 25˚S. In the event that these criteria produce more than four targ

the closest areas are merged. Target areas are determined in task (mc/sv/targets). The diabatic singular ve

computed in the tasks (mc/sv/sv1 ... sv4).

The coefficients for the Gaussian sampling of the diabatic singular vectors are determined in task (mc/sv/ro

standard deviation for the Gaussian sampling of the diabatic singular vectors is proportional to the root

square value of the scaling coefficients , which are determined as described in the previous section:

Then independent random numbers are drawn from a normal distribution with standar

viation and zero mean. To avoid perturbations with very large amplitudes the distribution is truncated at

Let denote the th singular vector of target area . Then the tropical perturbations for the th pert

D

di α f i⁄=

α

α α 2.0=

α 2.0=

x i pi epi i, 1= …,
Nens

2
------------,+=

j j 1= Nens 2⁄ 2 j 1–( )
j 2 j

j

M tg 4≤ Nbasis 5=

β
di

β dk
2 N2

basis⁄
k 1=

Nbasis

∑
 
 
 
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=
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2.6 GENERATION OF THE PERTURBED INITIAL CONDITIONS

This task (mc/sv/pertinic) generates the perturbed initial conditions at the resolution of the nonlinear integra

2.7 NONLINEAR INTEGRATIONS OF THE CONTROL AND OF THE PERTURBED FORECASTS

This task controls the time integration of the unperturbed (mc/fc/cf/control) and perturbed ensemble membe

fc/pf/nn). The seed for the random number generator used to perturb the tendencies is set to a number that

mined from the number of the perturbed forecast (NENSFNB) and the initial date and time of the forecast

xtropics
j q jk

m( ) v j
m( )

k 1=

Nbasis

∑
m 1=

Mtg

∑ j, 1= …, Nens.,=
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	1.1 Introduction
	The ensemble prediction system (EPS) is a technique to predict the probability distribution of fo...
	Figure 1.1 A schematic illustration of the growth of an isopleth of the forecast error probabilit...
	Fig. 1.1 shows a schematic illustration of the phase-space evolution of the probability distribut...
	In the early part of the forecast, error growth is governed by linear dynamics. During this perio...
	The arrows at initial and forecast time define the dominant singular vector at initial and final ...
	The growth of the (isopleth of the) PDF between Figs. 1.1 (b) and (c) describes a nonl inear evol...
	The number of degrees of freedom of the operational ECMWF model is (very) much larger than the la...
	An alternative strategy is to base the perturbations on the singular vectors. Clearly, by focusin...
	Firstly, as shown by Rabier et al. (1996), the sensitivity of day-2 forecast error to perturbatio...
	Secondly, provided the metric or inner product for the singular vectors is an accurate reflection...
	Thirdly, singular vector perturbations may provide a relatively efficient means of sampling the f...
	Fourthly, in practice the initial PDF is only poorly known. Hence it is difficult to even define ...
	Fifthly, from a purely pragmatic point of view, it would seem to be wasteful to integrate explici...
	At present, the EPS is based on the notion that forecast uncertainty is dominated by error or unc...
	Each EPS perturbation is a linear combination of the computed singular vectors. This is done so t...
	The EPS was first implemented operationally in 1992 (Palmer et al., 1993). A general description ...

	1.2 Singular vectors
	1.2.1 Formulation of the singular vector computation
	One way to define singular vectors is by means of a maximization problem. The scalar which has to...
	(1.1)
	where denotes the Euclidean inner product, , and and are positive definite operators. The operato...
	(1.2)
	where is the adjoint of . The defining equation (1.2) can be generalized by activating operators ...
	The operator determines the properties by which the singular vectors are constrained at initial t...

	1.2.2 Use of the total energy norm
	When using the total energy norm, or any other simple operator, at initial time, the generalized ...
	(1.3)
	where and stands for the vorticity, divergence, temperature, specific humidity and logarithm of t...
	Since the operator is a diagonal matrix, one can easily define a matrix so that . Multiplying bot...
	(1.4)
	which can be solved using the Lanczos algorithm, see Appendix Section A.1. The energy metric is b...

	1.2.3 Use of the Hessian of the 3D-Var objective function
	In the incremental formulation of 3D-Var, the Hessian of the objective function can be used as an...
	(1.5)
	and the increment where attains its minimum, provides the analysis which is defined by adding to ...
	(1.6)
	The operators and are covariance matrices of the background and observation error respectively an...
	(1.7)
	where is the observation vector and is a linear approximation of the observation operator in the ...
	The Hessian of the objective function is given by
	(1.8)
	Provided that the background error and the observation error are uncorrelated, with the true stat...
	(1.9)
	Rewriting (1.9) gives
	(1.10)
	Using the assumption that the background and observation error are uncorrelated the above equatio...
	(1.11)
	By now multiplying each side of (1.11) to the right with its transpose, the desired result follows.
	The defining eigenvalue problem for the singular vectors becomes
	(1.12)
	Since the objective function is quadratic in the incremental formulation, the Hessian in (1.12) c...


	APPENDIX A Eigenvalue algorithms
	A.1 The Lanczos algorithm
	Algorithms based on Lanczos theory are very useful to solve an eigenvalue problem when only a few...
	Consider the eigenvalue problem
	(A.1)
	where the matrix is dimensional, and symmetric. Without loss of generality, we can also suppose t...
	If is a real, symmetric matrix, then there exists an orthogonal real matrix such that

	, (A.2)
	where is a diagonal matrix, and denotes the transpose of (Schur decomposition theorem).
	The Lanczos algorithm does not directly compute the diagonal matrix , but it first computes a par...

	, (A.3)
	with

	, (A.4)
	and with

	(A.5)
	where the vectors are column vectors, and where the number of iterations is much smaller than the...

	. (A.6)
	The elements of the diagonal matrix are an estimate of the eigenvalues of , and an estimate of th...

	, (A.7)
	The actual computation is performed by writing Eq. (A.3) as

	. (A.8)
	Equating columns of Eq. (A.8), it follows that

	(A.9)
	for . The orthogonality of the vectors implies that

	. (A.10)
	Moreover, if

	(A.11)
	is non�zero, then

	, (A.12)
	where . An iterative application of these equations, with a randomly chosen starting vector , def...
	The reader is referred to Golub and van Loan (1983) for a theoretical description of the Lanczos ...


	A.2 The Jacobi–Davidson algorithm
	The generalized eigenproblem
	(A.13)
	is usually handled by bringing it back to a standard eigenproblem

	(A.14)
	The matrix is in general nonsymmetric, even if both and are symmetric. However, if is symmetric a...

	. (A.15)
	The proposed method to solve (A.14) constructs a set of basis vectors of a search space , c.f. th...

	(A.16)
	This -dimensional subspace is denoted by . The vector is a starting vector that has to be chosen....
	Given a search space , the approximate eigenpair of (A.15) is a linear combination of the basis v...

	. (A.17)
	A suitable criterion for finding an optimal pair is the Galerkin condition that the residual

	(A.18)
	is -orthogonal to the search space to . Hence

	(A.19)
	and consequently, using (A.19),

	(A.20)
	Note that the resulting eigenproblem is of the dimension of the search space, which is generally ...
	It can be shown that the residuals form a -orthogonal basis for when the approximate eigenpairs a...


	A.3 Solution method
	As was stated before, the natural search space for the generalized eigenvalue problem is the Kryl...
	(A.21)
	one iteratively solves the system

	(A.22)
	Iterative solution methods require, apart from vector operations, only multiplications with . The...
	The complete algorithm can be summarized as follows.
	• Choose a starting vector
	• Compute , B-normalize
	• Repeat the following 7 steps NITERL times
	1) compute
	2) Solve small eigenproblem
	3) Select Ritz value and
	4) Compute Ritz vector and residual
	5) Compute approximately with the CR-method
	6) B-orthonormalize new against
	7) Expand with the resulting vector
	The matrix contains the basis for the search space, the vector contains the new basis vector and ...
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	Table of contents
	2.1 The singular vector code
	2.1.1 Set-up routines
	2.1.2 Main routines
	2.2 Calculation of initial perturbations
	2.3 Unperturbed analysis retrieval
	2.4 Analysis error estimate retrieval
	2.5 Generation of initial perturbations

	2.5.1 Extratropical perturbations
	2.5.2 Tropical perturbations
	2.6 Generation of the perturbed initial conditions
	2.7 Nonlinear integrations of the control and of the perturbed forecasts


	2.1 The singular vector code
	The singular vector computation is called from CUN3 in CNT0 or from CUN2 in CUN1, depending on wh...
	2.1.1 Set-up routines
	Details of the set-up routines are given in Table 2.1.

	Table 2.1 Constants in namelist NAMLCZ controlling the singular vector computation.
	LANCZOS
	LOGICAL
	Activates singular vector computation with Lanczos algorithm (NCONF=601)
	TRUE
	LJACDAV
	LOGICAL
	Activates singular vector computations with Jacobi–Davidson algorithm (NCONF=131)
	FALSE
	LOCNORM
	LOGICAL
	Switch to localize norm computation in grid space
	TRUE
	ALAT1
	REAL
	NW corner of local area (defined by point 1)
	30
	ALON1
	REAL
	359.5
	ALAT3
	REAL

	SE corner of local area (defined by point 3)
	90
	ALON3
	REAL
	0
	NLEVMIN
	INTEGER
	Minimum level of local area
	1
	NLEVMAX
	INTEGER
	Maximum level of local area
	NLEVG
	LSPTRLC0
	LOGICAL
	Switch to truncate in spectral space at initial (0) time
	FALSE
	LSPTRLC1
	LOGICAL
	Switch to truncate in spectral space at final (1) time
	FALSE
	NWTRMIN0(1)
	INTEGER

	Spectral coefficients with total wavenumber outside window are set to zero
	0
	NWTRMAX0(1)
	INTEGER
	NXMAX
	LNEWNORMT0
	LOGICAL
	Switch to re-define the norm at initial time
	FALSE
	NEWNORMT0
	INTEGER
	Re-defines initial norm
	1: total energy
	2: kinetic energy
	3: vorticity squared
	4: stream function squared
	5: rotational kinetic energy
	1
	NITERL
	INTEGER
	Maximum number of Lanczos or Jacob–Davidson inner iterations
	70
	NINNER
	INTEGER
	Number of Jacobi–Davidson inner iterations
	2
	NJDSTOP
	INTEGER
	Value of NSTOP when LJACDAV=TRUE
	144
	LEVOLC
	LOGICAL
	Switch to evolve singular vectors
	TRUE
	NEIGEVO
	INTEGER
	Number of singular vectors to evolve
	35
	NLANTYPE
	INTEGER
	Determines type of singular vectors
	1: energy type norms are used
	2 and 3: obsolete
	4: same as 1 but now NCONF = 131
	5: Hessian is used at initial time
	6: for computing eigensystem of the Hessian
	1
	The routine SULCZ defines the constants as listed in Table 2.1 and determines the configuration o...


	2.1.2 Main routines
	The defining equation (1.2) for the singular vectors takes the form
	(2.1)
	The routine OPM is the identity in case a simple energy norm is used at initial time, or it is eq...


	2.2 Calculation of initial perturbations
	For a description of the evolution of the ECMWF Ensemble Prediction System (EPS) the reader is re...
	The methodology used in the Ensemble Prediction System to define these linear combinations in the...
	The generation of the ensemble initial perturbations is compounded of 5 steps:
	(i) retrieval from the ECMWF MARS archive of the unperturbed analysis (mc/sv/inidata);
	(ii) retrieval from the ECMWF MARS archive of the estimate of analysis error (mc/sv/getea);
	(iii) generation of initial perturbations: selection of extratropical singular vectors, phase�spa...
	(iv) generation of the perturbed initial conditions: spectral expansion and vertical interpolatio...
	(v) non�linear integrations starting from unperturbed (mc/fc/cf/control) and perturbed initial co...
	Hereafter a brief description of each step is reported. The singular vectors’ resolution is T42L4...

	2.3 Unperturbed analysis retrieval
	This task (mc/sv/inidata) retrieves from the ECMWF MARS archive the unperturbed analysis at full ...

	2.4 Analysis error estimate retrieval
	This task (mc/sv/getea) retrieves the estimate of analysis error from the ECMWF MARS archive . At...

	2.5 Generation of initial perturbations
	This task (mc/sv/rot) generates the initial perturbations.
	2.5.1 Extratropical perturbations
	The first step is the selection of singular vectors among the ones computed (see Section 1.2). Th...
	(i) The first 4 singular vectors are always selected;
	(ii) For each singular vector a localization function is defined in three�dimensional grid�point ...
	(iii) An overlap function is defined at each point as the sum of localization functions of the fi...
	(iv) Each subsequent singular vector (from the 5th onwards) is examined in turn, and is selected ...
	Step (iv) is repeated until singular vectors are selected. The final overlap function gives the n...
	Once singular vectors have been selected, an orthogonal rotation in phase space and a final re�sc...
	(2.2)
	and then:
	. (2.3)
	Let be one of the orthonormal perturbations defined by Eq. (2.2), in terms of the zonal and merid...
	, (2.4)
	where the overbar represents a mean over the grid�point space, gives an estimate of the maximum l...
	The rotation matrix is defined in such a way to minimise the cost function
	. (2.5)
	Since CF is not a simple quadratic function of the independent variables, the minimization cannot...
	In practice, the purpose of the phase�space rotation is to generate perturbations which have the ...
	Once the rotation has been performed, the perturbations are re�scaled in order to have a realisti...
	, (2.6)
	where is a constant factor which represents the maximum acceptable ratio between perturbation amp...
	From the first quarter of 1998 onwards, also linearly evolved singular vectors are used in the ge...
	The perturbations of the initial conditions in the extratropics consist of symmetric plus/minus p...

	2.5.2 Tropical perturbations
	Initial EPS perturbations in the tropics are included since cycle 24R3 (introduced operationally ...
	The coefficients for the Gaussian sampling of the diabatic singular vectors are determined in tas...
	Then independent random numbers are drawn from a normal distribution with standard deviation and ...


	2.6 Generation of the perturbed initial conditions
	This task (mc/sv/pertinic) generates the perturbed initial conditions at the resolution of the no...

	2.7 Nonlinear integrations of the control and of the perturbed forecasts
	This task controls the time integration of the unperturbed (mc/fc/cf/control) and perturbed ensem...
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