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ECMWF
Shinfield Park, Reading RG2 9AX, United Kingdom

1 Introduction

Atmospheric models which are used in data assimilation are not perfect. Taking into account the errors of
the model has been studied in the context of sequential data assimilation but has generally been ignored in
variational data assimilation. We present here a general introduction to weak constraints 4D-Var which ex-
plicitely takes into account model error and some preliminary results for its implementation in the ECMWF
data assimilation system.

2 Variational Data Assimilation

Two sources of information are available to perform data assimilation: theoretical knowledge of the atmosphere
and observations. Our theoretical knowledge of the system can be represented, on one hand by equations
governing the physical state of the system x:

� �x� � 0�

and on the other hand, by equations relating the state of the system x to the observations y:

� �x� � y�

Taking into account the uncertainties, these equations can be rewritten as:

� �x� � εg�

y�� �x� � εh�

where εg and εh are the errors associated to � and � . Combining the two sources of information, the a
posteriori probability distribution for the state x given the observations y is (from Bayes theorem):

P�x�y� � α exp

�
�

1
2
�y�� �x��T R�1�y�� �x���

1
2
� �x�TC�1

g � �x�

�

where Cg and R represent the covariance matrices of the errors εg and εh. The problem of finding the maximum
of the probability distribution can be replaced by the problem of finding the minimum of:

J�x� �� ln�Pa�x�� �
1
2
�y�� �x��T R�1�y�� �x���� �x�TC�1

g � �x��

In meteorology, a prior estimate of the state of the system (background xb) is usually known, with error εb and
background error covariance matrix B. Taking it into account, the cost function becomes:

J�x� �
1
2
�x� xb�

T B�1�x� xb��
1
2
�y�� �x��T R�1�y�� �x���

1
2
� �x�TC�1

f � �x�

where � represents the remaining theoretical knowledge after background information has been accounted
for. This type of formulation was introduced very early on bySasaki (1970). It is important to note that it is
very general and that no hypothesis regarding x has been made yet.
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2.1 Simplifying hypothesis

A variety of choices of control vector x are possible. For example, x can be chosen to be the 3D state of the
atmosphere at analysis time. In that case,� might include balance constraints and� is a (sophisticated) 3D
operator. This algorithm is known 3 dimensional variational data assimilation or 3D-Var.

Another possible choice is to consider x as the 4D state of the atmosphere during the assimilation window with
the additional assumption that the forecast model is perfect. x is only a function of the initial condition x0 and
the size of the control variable is reduced according to:

xi ��i�xi�1� ��0�i�x0��

where � is the model representing the evolution of the atmospheric flow and �i� j represents the model
integration from time-step i to time-step j. � now includes constraints other than the model (digital filter
initialisation for example). � is a (sophisticated) 4D operator, accounting for the time dimension which
makes it possible to use observations at the correct time and to account for serially correlated observations.
This approach is known as strong constraint 4D-Var or, very often, simply 4D-Var.

3D-Var and 4D-Var implementations were made possible by the use of the adjoint technique introduced by
LeDimet and Talagrand (1986) which allows to evaluate the gradient of the cost function at a reasonable cost
by one backward integration of the adjoint model. This is the algorithm which is used in most operational
implementation of 4D-Var.

2.2 Weak constraint 4D-Var

We now consider that x is a four-dimension control vector, representing the three-dimension state of the at-
mosphere over the assimilation period. The successive three-dimension states are not independent and have to
satisfy the equations governing the evolution of the atmospheric flow:

xi ��i�xi�1�

where �i is the nonlinear atmospheric model. In practice, these equations are known and solved inexactly,
both because of our imperfect knowledge of the atmosphere and because of the discrete representation being
used. x verifies:

xi ��i�xi�1��ηi (1)

where ηi is the model error at time-step i. We can define� �x� in the last term of the cost function by:

�i�x� � xi��i�xi�1��

The choices of control vector x � �xi�i�0�����n and χ � �x0��ηi�i�1�����n� are equivalent according to equation
(1). For small perturbations of the control vector, equation (1) can be linearised and the perturbation evolves
according to:

δxi � Miδxi�1 �δηi � M0�iδx0 �
i

∑
j�1

Mj�iδη j

where M is the linearised model. The corresponding variation of the total cost function is:

δJ�x0�η� � δxT
0 B�1�x0 � xb��δxT

0

n

∑
i�1

MT
i�0HT

i R�1
i di

�
n

∑
j�1

δηT
j

n

∑
i� j

MT
i� jH

T
i R�1

i di �
n

∑
j�1

n

∑
k�1

δηT
j Q�1

j�k ηk

362
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The gradient ∂J
∂η j

is obtained by accumulating contributions from the adjoint at steps i � j� � � � �n and the total

gradient of the cost function is obtained by one backward integration of the adjoint, as was the case in strong
constraints 4D-Var.

3 Weak constraint 4D-Var: Practice

3.1 Size of the problem

At the current operational resolution at ECMWF, the 4D-Var control variable is represented in spectral space
at the horizontal truncation of T159, with 60 levels in the vertical and a time-step of 30 minutes over a 12
hour assimilation window. For the operational strong constraints 4D-Var, this leads to a control variable of size
7�7�106. In the case of weak constraints 4D-Var, the size of the control variable would increase to 1�9�108.
The corresponding model error covariance matrix would have 1�9�1016 elements and occupy 131,331 Tb of
memory. This cannot be achieved on today’s supercomputers.

In addition to this technical problem, one has to consider the following: 3� 106 observations are available
each day to estimate the 1�9�1016 elements of Q. Assuming that all parameters of Q are observable, that there
is no redundancy in observed quantities and that model error can be separated from other sources of error, it
would take 6 billion years to gather as many observations as there are parameters in Q. To gather meaningful
statistics, it would require an order of magnitude more data. There is clearly not enough information available
to solve this problem even if we had enough computer power.

3.2 Representing Model Error

Model error comes from several sources, some of which are constant (errors related to orography) while others
can be almost periodic (errors related to diurnal cycle) or flow dependent (errors in physical processes). Dis-
cretisation and numerical errors may be more random. Overall, model error is correlated in time (in addition
to growth). In the incremental 4D-Var context, model error as seen by 4D-Var also includes the error between
the inner and outer loops which is the difference between the high resolution nonlinear model and the low
resolution linearised model with limited physics used for the minimisation of the cost function. This is not
negligible as shown by Trémolet (2003).

The simplest possible approximation is to consider that model error is constant over the assimilation period.
Other choices have been proposed such as the use of a Markov chain byZupanski (1997):

ηi �
µ

µ ��1�µ2�1�2
ηi�1 �

�1�µ2�1�2

µ ��1�µ2�1�2
rk

where rk is a random variable at lower resolution than ηi. Another possible choice would be a Fourier series
expansion which would represent the diurnal cycle well as proposed byGriffith and Nichols (1998). One could
also want to include a vanishing term to represent model spin-up/down.

In the example presented below, we will assume that model error is a constant forcing over the assimilation
window, keeping in mind that other, less restrictive assumptions will have to be considered in the future.

3.3 Model Error Covariance Matrix

As for the choice of control variable, many approximations are possible to define the model error covariance
matrix. Statistics for model error could be defined from the model’s implementation, taking into account
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uncertainties in each aspect of the model (numerics and all physical processes). A practical approach is to
use an approximation based on the background error covariance matrix B as described byZupanski (1993).
Other possibilities have been proposed such as the one based on statistics on innovation and residual byDaley
(1992) which relies on Kalman filtering and is not (easily) applicable to 4D-Var. It is also possible to described
model error and the associated statistics by an ensemble of slow modes as introduced byPhillips (1986) and
Cohn and Parrish (1991). Once a parameterisation for Q has been chosen which depends on some parameters
α , it is possible to determine the parameters online as shown byDee (1995). The Lanczos algorithm which is
already used in the 4D-Var minimisation at ECMWF could also be used for that purpose (M. Fisher, personal
communication).

4 Preliminary results

-5.654

-5

-4

-3

-2

-1
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
6.5
7
7.206

-2.230
-2.2
-2
-1.8
-1.6
-1.4
-1.2
-1
-0.8
-0.6
-0.4
-0.2
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
1.998

Figure 1: Surface pressure model error obtained with constant forcing and Q � 10�1B on the left and
corresponding impact on the initial condition increment on the right.

The left panel of figure 1 shows the surface pressure component of model error obtained in the IFS in the
simple case where model error is represented by a constant forcing term and the model error covariance matrix
is chosen as Q � αB with α � 10�1. The right panel on the figure shows the change in the surface pressure
initial condition when model error is used. Although the scale is different on both panels, the patterns in both
are very similar and of opposite signs. In fact, the cumulated effect of model error forcing will compensate
for the difference in initial condition, and there is no visible impact in the forecast (not shown). This result is
disappointing but can be explained by looking at the impact of model error on a forecast.

4.1 Model Error Evolution

In this section, we try to evaluate the impact of model error forcing on the forecast. Knowing x0 and η , xi can
be computed for all time-steps according to:

xi ��i�xi�1��ηi ��i

�
�i�1

�
� � �

�
�1�x0��η1

�
� � �

�
�ηi�1

�
�ηi

If model errors are small enough,�i can be linearised and we obtain:

xi � xm
i �

i

∑
j�1

Mi � � �Mj�1η j (2)

where xm
i ��i�� � � ��1�x0�� � � �� is the perfect model forecast. Early components of model error will dominate

the resulting impact on the forecast for two reasons: they have an impact on all the later steps and this impact
can grow with time according to the model dynamics. In a weak-constraints 4D-Var, this means that the cost
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function will be dominated by the early components of model error, or in other terms, that the early component
will be better determined. If we add the hypothesis that model error is constant over the assimilation window,
it becomes clear the model error will mainly represents the early errors.

In the incremental formulation of 4D-Var, we can write xi as a function of the initial condition increment δx0
and model error:

xi ��i

�
�i�1

�
� � �

�
�1�xb �δx0��η1

�
� � �

�
�ηi�1

�
�ηi

This expression can be linearised in the same way as (2), we obtain:

xi � xb
i �Mi � � �M1δx0 �

i

∑
j�1

Mi � � �Mj�1η j

and δx0 can be identified with η0. In addition to that, since we assumed that Q was proportional to B, the
initial condition increment δx0 and the model error η are constrained in the same directions. Only their
relative amplitudes which are controlled by α differ. As a consequence, they both predominantly retrieve the
same information which explains the lack of impact in this preliminary experiment.

4.2 Model Bias control variable

We have considered so far that model error was defined by

ηi � xi��i�xi�1��

It is also possible to define it relatively to the perfect model forecast:

βi � xi� xm
i �

In that case too, we can simplify the problem by assuming βi constant in time. This means that β represents
the bias of the model. Since the model error term in the cost function is the sum of the difference at each
time-step between the perfect model forecast and the corrected forecast, all the components in time now have
equal influence on the cost function. It is a good representation of the time averaged error. One should note
that the choices of control vector x � �xi�i�0�����n, χ � �x0��ηi�i�1�����n� or χ � � �x0��βi�i�1�����n� are equivalent.
However, the approximations ηi � η and βi � β are not equivalent.

The table below summarises the possible choices of control variable and simplifying assumptions which can
be made in variational data assimilation.

x0 x0 x0 x0 x0
ηi or βi ηi � η βi � β ηi � 0 ηi � 0

or
xi ��i�xi�1��ηi
xi ��0�i�x0��βi

xi ��i�xi�1��η xi ��0�i�x0��β xi ��i�xi�1� xi � x0

� � � � �
Weak constraint

4D-Var
Constant
Forcing

Model
Bias

4D-Var 3D-Var

4.3 Computational cost

The cost per iteration of the weak constraints 4D-Var can be estimated. In the case of constant forcing, the size
of the control vector is double that of the strong constraints case. The cost of the linear algebra is thus doubled
(at most). We have already seen that one backward integration of the adjoint model gives access to the gradient
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of the cost function as was the case in strong constraints 4D-Var. The cost of adding the forcing in the linear
and adjoint models and the cost of linear algebra is negligible when compared with the model integrations as
can be verified in table 1.

The number of iterations of the minimisation algorithm is fixed in the first minimisation. In the subsequent
minimisations, it depends on the conditioning which is used. ECMWF 4D-Var relies on an efficient precon-
ditioning using the Lanczos algorithm and it is expected that the conditioning of the second and following
minimisations will remain the same (M. Fisher, personal communication).

Elapsed time Strong constraint Weak constraint
Dot product 3.3 ms 4.9 ms

Cost function 89.2 sec 91.9 sec
Memory 703 Mb 769 Mb

Table 1: Measured elapsed time and memory for T159 minimisation with the IFS on IBM SP, 128 CPUs.
The cost function times include the evaluation of the cost function and its gradient which are obtained by
integrating the tangent linear and adjoint models.

5 Conclusion and future developments

Weak constraints 4D-Var has been described and a very preliminary application to ECMWF data assimilation
system presented. It has been shown that this implementation is too crude to have a beneficial impact. However,
the reasons for this have been identified and developments are under way to remove some of the excessive
simplifications of this preliminary implementation.

Weak constraint 4D-Var is a generalisation of the more widely developed strong constraints 4D-Var where
one simplifying assumption, namely the assumption that the forecast model is perfect, has been removed. In
addition to lifting a questionable assumption, model error is valuable information which can be used in several
ways. It can be added as forcing in the forecast model or at the post-processing stage if a model bias was
determined. It might help identify model deficiencies and improve the model. Finally, model error term can
be used in sensitivity computations as well as data assimilation and help determine whether bad forecasts are
a consequence of errors in the initial condition or errors in the forecast model.
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