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1. Introduction 
These notes discuss some aspects of the objective validation and evaluation of algorithms for assimilation of 
meteorological observations. After a brief reminder of the basics of assimilation and of the theory of 
statistical linear estimation (Section 2), three classes of objective evaluation criteria are discussed and 
illustrated: assessment of assimilated fields against independent data and check of the consistency between a 
priori assumed and a posteriori observed probability distributions for the data errors (Section 3), objective 
check of optimality of a linear estimation scheme (Section 4). Parts of the contents of these notes have 
already been published in Talagrand (1999, 2003) and in Talagrand and Bouttier (2000). We also refer to 
Rodgers (2000) and Bennett (2002) for material of fundamental interest for questions discussed in these 
notes. 

2. Basics on assimilation - the best linear unbiased estimator  
The purpose of assimilation of meteorological observations is to estimate as accurately as possible the state 
of the atmospheric flow, using all available relevant information. The latter essentially consists of two parts 

(a) The observations proper, which are distributed more or less regularly in both space and time, and 
vary in nature, accuracy, as well as in spatial and temporal resolution. 

(b) The physical laws which govern the evolution of the flow, available in practice in the form of a 
discretised, and necessarily approximate, numerical model. 

Either form of information is affected with some uncertainty, and that uncertainty must be taken into account 
in the assimilation process. That is neccessary for at least two reasons. First, a larger weight must be given, 
in one way or another, to more accurate data than to less accurate ones. And it is highly desirable to be able 
to quantify the uncertainty on the fields produced by the assimilation. 

The most convenient way for describing uncertainty in a way that is both mathematically consistent and 
manageable is through probability distributions. This leads to describe the purpose of assimilation in terms 
of probabilistic, or bayesian, estimation. Stated in a few words, the ultimate purpose of assimilation is to 
determine the conditional probability distribution for the state of the atmospheric flow, given the data and 
the probability distribution describing the uncertainty affecting those data (see, e.g., Lorenc 1986). However, 
if such a general formulation provides useful guidelines for the development of assimilation methods, it goes 
well beyond what can be achieved in practice. The probability distribution of the uncertainty affecting the 
various data is often very poorly known. And even if it was known, it would be totally impossible, with 
present means of computation, to practically describe a probability distribution in the state space of a 
Numerical Weather Prediction model, which can now have dimensions in the range 106-107. 

One has to limit oneself to a much more modest goal. Most present assimilation algorithms are based, 
sometimes implicitly, on a linear approximation. A general description is as follows. Let us denote x the real, 
unknown, state of the atmospheric flow, expressed in a format appropriate for the purpose at hand (most 
often, in the format of the state vector of the numerical dynamical model used for the assimilation). The 
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vector x belongs to state space, denoted S, with dimension n. The available data are assumed to make up a 
vector z, belonging to data space D, with dimension m. The link between the data and the unknown state 
vector is assumed to be of the form 

 z = Γx + ζ (1) 
where Γ is a known (mxn)-matrix, representing a linear operator from state space into data space, while ζ  is 
a random vector in data space (the ‘data error’), meant to represent the uncertainty on the data. We look for 
an estimate of x of the form 

 xa  =  β  + Az 

where the n-vector β and the (nxm)-matrix A are to be determined under the following two conditions 

The estimate xa  is independent of the choice of the origin in state space (the result must be independent of 
whether temperatures are expressed in kelvins or celsius). 

(a) The variance of the estimation error xa –x is minimum. 

The solution to that problem is 

 xa  =  (ΓT S-1 Γ)-1 ΓT S-1 [z - µ] (2) 

i.e., 

 A = (ΓT S-1 Γ)-1 ΓT S-1 (3a) 

 Aβ µ= −  (3b) 

where µ ≡ E(ζ) and S ≡ E[(ζ-µ)(ζ-µ)T] are respectively the expectation and covariance matrix of the data 
error (here and in the following, E denotes mathematical expectation, and T vector or matrix transposition). 

The corresponding estimation xa –x error is unbiased 

 E(xa –x) = 0 (4) 

and has covariance matrix 

 Pa  ≡  E[(xa –x) (xa –x)T] =  (ΓT S-1 Γ)-1 (5) 

The estimate xa is the minimizer of the following scalar objective function, defined on state space 

 J(ξ)  ≡  (1/2) [Γξ - (z-µ)]T S-1 [Γξ - (z-µ)] (6) 

The meaning of that expression is clear. For any vector ξ in state space, J(ξ) measures the misfit between 
the data and the analogue Γξ of the data for state vector ξ. The misfit is weighted by the inverse covariance 
S-1 of the data error, so as to give a large weight to accurate data, and  a small weight to inacurrate data. 

The estimate xa is called the Best Linear Unbiased Estimator (BLUE) of x from z. Its explicit determination 
requires, at least apparently, the a priori knowledge of the first- and second-order statistical moments 
(expectation and covariance matrix) of the data error ζ. 

It is seen that the matrix A is a left-inverse of Γ (AΓ  = In, where In is the unit matrix of order n). This means 
that, when the data are exact (ζ=0),  the estimated state xa will be equal to the real state x. That an estimation 
scheme at least does not degrade exact data is an obviously desirable quality. Conversely, any left-inverse of 
Γ is of form (3a), where S is a non-negative symmetric matrix. 
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Expressions (2) and (5) are easily verified to be invariant in any invertible linear change of coordinates, 
either in data or state space. This means for instance that the BLUE is independent of whether wind velocity 
is expressed in geometrical components, or in terms of vorticity and divergence, or of whether 
meteorological fields are defined by gridpoint values, or by spectral coefficients. The BLUE is also 
independent, for instance, of whether a vertical sounding is expressed as a temperature profile in function of 
pressure or, through integration of the hydrostatic equation, as a geopotential profile. 

In  particular, the objective function (6) is independent of the coordinates used in data space. The right-hand 
side of (6) defines a proper scalar product in data space, called the Mahalanobis scalar product associated 
with the covariance matrix S. 

The condition for the BLUE to be unambiguously defined is that the data matrix Γ be of rank n, rankΓ = n 
(the condition that S must be invertible, which seems to required by equation (2), is only apparent, and the 
BLUE remains unambiguoiusly defined when S is singular, and some of the data at least are assumed to be 
perfectly accurate). The meaning of the condition rankΓ = n, which will be called the determinacy condition, 
is clear. It expresses that the data contain information, either directly or indirectly, on any component of the 
state vector x. If the determinacy condition is not verified, some components of x remain undetermined. The 
determinacy condition implies that there must be at lesat as many individual scalar data as components of x 
to determined, m ≥ n. We will set m = n + p. 

In the case when the data error ζ is gaussian, ζ = N(µ, S), the conditional probability distribution for x, given 
the data, is the gaussian disribution N(xa, Pa). Equations (2) and (5) therefore entirely solve the problem 
of bayesian estimation in the case of gaussian errors. 

When the determinacy condition is verified (and independently of any gaussian hypothesis), it is always 
possible to transform the data, through an invertible change of origin and coordinates in data space, into the 
following form 

 xb  = x + ζb (7a) 

 y  = Hx + ε (7b) 

The vector xb, which has dimension n, is an explicit estimate of the unknown state vector x. It will be called 
the background estimate of x (although that denomination must not be understood as implying that the 
knowledge of xb is necessarily anterior in any way to the knowledge of the other data). The vector y, which 
has dimension p, is an additional set of data, linked to the real state vector x through the (pxn)-matrix H. The 
errors ζb and ε can be assumed, without loss of generality, to have zero expectation 

 E(ζb) = 0       ;       E(ε) = 0 (8) 

As for the corresponding covariance matrices, they will be denoted: 

 E(ζbζbT) = Pb      ;        E(εεT) = R (9) 

(note that the matrix E(ζbζbT) is often denoted B). It can be further assumed, again without loss of generality, 
that the errors ζb and ε are mutually uncorrelated 

 E(ζbεT) = 0 (10) 

Equations (7-8-10) are a fairly good description of the actual conditions of most meteorological and 
oceanographical applications. A background xb is usually available, in the form of a climatological estimate, 
or of a forecast coming from the past. As for the additional vector of data y, it usually consists, for the most 
part at least, of observations, which may be either synchronous or distributed over a period of time. For that 
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reason, and for lack of a better expression, the vector y will be called in the sequel the observation vector, 
belonging to observation space O, with dimension p. 

Under conditions (8-9-10), the expressions (2) and (5) for the BLUE and the associated error covariance 
matrix assume the familiar forms 

           xa  = xb + PbHT (HPbHT + R)-1 (y - Hxb) (11a) 

  Pa  = Pb - PbHT (HPbHT + R)-1 HPb (11b) 

Both the estimate xa  and the associated error covariance matrix Pa are expressed in those equation as the sum 
of the background quantities xb and Pb, and of an appropriate correction. The correction on xb is 
proportional, through the gain matrix PbHT (HPbHT + R)-1, to the so-called innovation vector 

 d ≡  y – Hxb  = ε  – Hζb (12) 

The innovation vector is the discrepancy between the observation vector y and the analogue of the 
observated quantities in the background. It is of course only to the extent that the discrepancy is different 
from zero that the background has to be corrected. The innovation is a function of the background and 
observation errors only, and is independent of the state vector x. We can note that the matrix HPbHT + R, 
whose inverse appears in the gain matrix, is the covariance matrix of the innovation 

 HPbHT + R  = E(ddT) (13) 

Equations (11) are exactly equivalent to equations (2) and (5). Equations (2) and (5) are often (but not 
always) more convenient for theoretical developments, while equations (11) are usually more useful for 
practical numerical implementation. 

Most analysis and assimilation algorithms that have been used so far, or are used now, in meteorological or 
oceanographical applications are particular examples of the BLUE. Optimal Interpolation, Kalman filtering 
in its various simplified and/or extended forms, Kalman smoothing, three-dimensioanl variational analysis, 
in both its primal and dual formulations, four-dimensional variational assimilation, either of the strong- or 
weak-constraint type, and in both its primal and dual formulations, all those algorithms can be described as 
particular applications of the general approach that has just been described. Innumerable variants exist as to 
the choice of the data, the definition of the data operator Γ, the a priori specification of the first- and second-
order statistical moments of the errors affecting the data, and the numerical algorithms that are used for 
actually carrying out the necessary computations. But the basic purpose is always to obtain a variance-
minimizing linear (or quasi-linear) combination of the data. The only real exception so far is ensemble 
assimilation, which does not produce one estimate of the state of the flow plus a measure of the associated 
uncertainty, but produces rather an ensemble of estimates which are supposed to sample the conditional 
probability distribution of the state of the flow (see, e. g., Evensen and van Leeuwen 2000, or Houtekamer 
and Mitchell 2001). And still, most algorithms for ensemble assimilation are partially linear in that the 
formula (11a) is used for updating a predicted ensemble with new observations. Distinctly non-linear 
methods are also used for quality control of observations, i.e. for detection of erroneous observations (see, 
e.g., Lorenc, 1997). But, as important as quality control is for NWP, it is a very limited and specific aspect of 
the whole process of assimilation. 

3. Objective Validation and Evaluation 
If the theory of assimilation algorithms is now well understood, the same cannot be said of a posteriori 
validation and evaluation of existing algorithms. The only way to objectively assess the quality of the fields 
produced by an assimilation algorithm is by comparison with independent unbiased data, i. e., with data that 
are affected by errors which, in addition to being zero on statistical average, are statistically independent of 
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the errors affecting the data that have been used in the assimilation. Those conditions can be difficult to 
achieve, and are in any case impossible to objectively assess on the basis of the data themselves. The 
problem is complicated by the presence in the data of representativeness errors, due to the different spatial 
and temporal resolutions of the data and the assimilating model. Representativeness errors can be correlated, 
even if the instrumental errors of the data are not correlated. And of course, comparison with independent 
data can measure the quality of the assimilation only for those parameters for which independent data are 
available. In addition, if it allows to compare for instance the relative quality of two different assimilation 
procedures, it says nothing as to the possibly optimal character of those procedures. 

The determination of the BLUE requires the a priori specification of the first- and second-order statistical 
moments of the data errors. How is is possible to objectively determine those required quantities ? The only 
objective source of information on the data errors consists of the combinations of the data that are 
algebraically independent of the state vector x. When the data are written in format (7), those independent 
combinations make up the innovation vector (12), which thus contains all the objective information on the 
data errors. How can statistics of the innovation vector be used to determine the statistical moments whose 
specification is required for determining the BLUE ? To answer that question, we consider an estimation 
scheme of the form 

 xa  = xb + K  (y - Hxb) (14) 

where the gain matrix K can now be any (pxn)-matrix, not necessarily of the optimal form (11a) (one 
question of interest is precisely whether a known gain matrix is optimal or not). This is equivalent to saying 
that the estimation scheme produces the exact state vector x when implemented on exact data. Or that the 
scheme is of form (2), where the matrix S is non-negative (but not neceessarily optimal). 

Consider the difference 

 δ  ≡ z - Γxa  (15) 

i.e. the a posteriori difference between the data vector and the analogue of the data in the analysed fields. 
That vector will be called the Data-minus-Analysis (briefly, DmA) difference. In formulation (7), it reads 

 
( )

b a

a
p

δ
−  −

= =    −−   

Kdx x
I HK dy Hx

 

where Ip is the unit matrix of order p. For given gain matrix K, the DmA difference is a linear invertible 
function of the innovation vector d. It is therefore exactly equivalent to perform statistics on either one of 
those two vectors. 

The estimated state xa minimizes the objective function (6). The meaning of the minimization is clear. Γxa is 
the point in the image space Γ(S) which lies closest, in the sense of the S-Mahalanobis scalar product, to the 
data vector z. Γxa is therefore the orthogonal projection, in the sense of that scalar product, of z onto Γ(S). 
This suggests to decompose the data space D into the image space Γ(S) (which, because of the determinacy 
condition, has dimension n) and the space ⊥Γ(S) orthogonal to Γ(S) according to the S-Mahalanobis scalar 
product (which has dimension p). In that decomposition, the covariance matrix S reads 

 1

2

0
0

 
= 

 

S
S S

 (16a) 
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where S1 and S2 are positive definite matrices with respective dimensions nxn and pxp. The data matrix Γ 
reads 

 1

0
ΓΓ = 

 

  (16b) 

where Γ 1 is an (nxn)-matrix which, because of the determinacy condition, is invertible. Denoting by ζ1 and 
ζ2 the projections of the error vector ζ onto Γ(S) and ⊥Γ(S) respectively, the components of the data vector z 
read 

 z1 = Γ 1x + ζ1 

 z2 = ζ2 

For the sake of generality, we now assume that the error vector may have non zero expectation. The 
projection onto Γ(S) of the unbiased data vector is equal to z1 – E(ζ1). Equations (2), (5) and (16) then show 
that the BLUE xa and the associated estmation error covariance matrix are respectively equal to 

 xa  = Γ1
-1

 [z1 – E(ζ1)] (17a) 

and 

 Pa  =  Γ1
-1S1 Γ1

-T (17b) 

The DmA difference (15) is orthogonal to Γ(S) and, considered as a vector of ⊥Γ(S), equal to ζ2. It therefore 
has expectation E(ζ2) and covariance matrix S2. These quantities are independent of the quantities E(ζ1) and 
S1 which determine the BLUE and the associated error (equations 17). This shows that any expectation and 
covariance matrix of the DmA difference are compatible with any estimation scheme of form (14). The 
knowledge of the statistics of the DmA difference, or equivalently of the innovation vector, is totally useless 
for determining the BLUE or the associated error covariance matrix. Consistency between the observed and 
specified statistics of the innovation vector is neither a sufficient, nor even a necessary, condition for 
optimality of the estimate. 

This is true of course in the absence of any knowledge on the data error other than the innovation vector. As 
a simple example, let us consider the case when two observations of a scalar quantity x are available, of the 
form 

 1 1

2 2

z x
z x

ζ
ζ

= +
= +

 

The only combination of those observations that is independent of x is the difference z1 – z2 = ζ1 – ζ2 (i. e., 
the innovation vector if z2 is arbitrarily considered as being the ‘background’). The general result that has 
just been stated is that statistics of z1 – z2, obtained for instance from a time series of independent couples of 
simultaneous observations, are totally useless for estimating x. But if it is independently known (or if it be 
can reasonably assumed) that the observations z1 and z2 are unbiased [E(ζ1) = E(ζ2) = 0] and of same 
statistical quality [E(ζ1

2) = E(ζ2
2)], then the optimal estimate is necessarily xa  = (1/2) (z1+ z2). However those 

properties cannot be inferred from statistics of z1 – z2 [strictly speaking, the hypothesis that both observations 
are unbiased would be unvalidated if it turned out that E(z1–z2) ≠ 0; but the more general hypothesis that 
E(ζ1+ζ2) = 0, which also leads to xa = (1/2) (z1+ z2), cannot be checked against the statistics of z1–z2]. 

One can wonder why statistical consistency between the a priori assumed and a posteriori observed 
statistics of the innovation vector is not of critical importance. The fundamental reason is that, contrary to 
what a cursory look at, say, equation (6) might lead to think, it is not necessary, in order to determine the 
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BLUE xa and the associated estimation error covariance matrix Pa, to know entirely the expectation µ and the 
covariance matrix S of the data error. Equations (2) and (5) show that it is sufficient to know respectively ΓT 

S-1µ  (which has dimension n, instead of m for µ) and ΓT S-1 (which has dimension nxm, instead of mxm for 
S-1). The significance of that remark becomes clear in the decomposition (16). In order to determine the 
BLUE and the associated error, it is not necessary to know entirely the S-Mahalanobis scalar product. It is 
sufficient to be able to identify the space ⊥Γ(S), and to know the S-metric in the space Γ(S). The metric in 
⊥Γ(S) is useless. Similarly, concerning the expectation µ, only its S-projection onto the space Γ(S) is 
required. Any inconsistency between the a priori assumed and a posteriori observed statistics of the 
innovation vector can always be mathematically explained out by a misspecification of the additional, 
useless, degrees of freedom. 

The fact that it is not necessary to know entirely µ and S in order to determine the BLUE and the associated 
uncertainty, if it is important from a theoretical point of view, is however of little practical importance, and 
cannot be taken davantage of for reducing the number of quantities which must be a priori specified for 
performing the assimilation. The S-metric depend on the statistical properties of the errors affecting the 
various data, and it not possible to identify a priori, without knowing those errors, which parameters will be 
useful, and which will not. In addition, the data constantly vary over time in type, number, and spatio-
temporal distribution, and one particular parameter which may be useless one day may be required the 
following day. 

The general conclusion is that, if one wants to use the statistics of the innovation vector, or of any quantity 
derived from the innovation vector, for drawing inferences that can be useful for the assimilation, one must 
necessarily make independent hypotheses. Those independent hypotheses cannot be objectively validated, at 
least not on the basis of the innovation vector itself. Such hypotheses are actually very commonly done (and 
very often implicitly). For instance, a systematic bias in the innovation vector, at least in the components of 
the innovation vector obtained by comparison with well-calibrated observations, is usually interpreted as 
resulting from a bias in the background. For another example, several authors (Hollingsworth and Lönnberg, 
1986, Daley, 1993) have studied the horizontal correlation of the innovation vector obtained from 
radiosonde observations. It is reasonable to assume that radiosonde observation errors are horizontally 
uncorrelated. In these conditions, a direct estimate of the horizontal correlation of the forecast error can be 
obtained. In addition, if the observation and forecast errors are supposed to be uncorrelated, the residual 
obtained by extrapolating the covariance to zero horizontal distance provides an estimate of observation 
error variance. One conclusion from these studies is that the 6-hour forecast error is typically of the same 
magnitude as the observational error. 

The number of statistical diagnostics that can in principle be implemented on either the innovation or the 
DmA vector is in practice unlimited. Critical aspects are the statistical significance of the diagnostics on the 
one hand, and whether or not independent appropriate information is available for usefully exploiting any 
observed inconsistency between the a priori assumed and a posteriori observed statistics. Many adaptive 
schemes have been defined for progressively adjusting the expectation or covariance parameters on the basis 
of observed statistical inconsistencies. In the context of Kalman filtering, and independently of 
meteorological or oceanographical applications, one can mention the early works of Mehra (1972) and 
Godbole (1974). For more recent meteorological and oceanographical applications, see, e. g., Blanchet et al. 
(1997) or Dee et al. (1999). 

Keeping in mind that a lack of consistency between a priori assumed and a posteriori observed statistics 
does not constitute in itself a proof of non-optimality, we now briefly describe a number of basic diagnostics. 
In a consistent system, the innovation and the DmA vectors have zero expectation. If they are observed to 
have non-zero expectation, it necessarily means that a systematic bias in the data has not been properly taken 
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into account. This fact has been systematically exploited by Dee and Da Silva (1998) who, assuming any 
bias to come from the background, have developed algorithms for constantly correcting the latter. 

Using equation (2), the covariance matrix of the DmA difference is shown to be equal to 

 E(δδT)  =  S - ΓPaΓT 

The term subtracted on the right-hand side is positive definite [it is actually the covariance matrix of the 
vector Γ(xa-x)]. This means that the variance of any component of the DmA difference is less than the 
variance of the corresponding component of the error. Optimally assimilated fields statistically fit the data to 
within the accuracy of the latter (Hollingsworth and Lönnberg 1989, have called efficient an assimilation 
system that possesses that particular property). If an unbiased assimilation system does not fit the data to 
within their assumed accuracy, that means that the error covariance matrix S has been misspecified (the 
misspecification may of course be in the variance of the error affecting the ill-fitted data). 

The objective function (6) takes at its minimum xa the value (assuming observations have been unbiased) 

 J(xa)  =  (1/2) [Γxa - z]T S-1 [Γxa - z]  

It is the squared S-Mahalanobis norm of the DmA difference. Using the background-observation 
decomposition (7), standard matrix manipulations lead to 

 J(xa)  =  (1/2) dT [HPbHT + R]-1 d (18) 

As already mentioned, the matrix HPbHT + R is the covariance matrix E(ddT) of the innovation d, and J(xa) 
is therefore the squared Mahalanobis norm of d with respect to its own covariance matrix. Writing equation 
(18) in the basis of the principal components of d, in which E(ddT) is the unit matrix of order p, it is easily 
seen that, on statistical expectation 

 E[J(xa)]  =  p/2 (19) 

If in addition the data errors are gaussian, J(xa) can be shown to follow a χ2 probability distribution of order 
p, which means that its standard deviation is equal to √(p/2). For large values of p, the distribution of J(xa) 
must therefore be strongly concentrated about its expectation. This is likely to remain true, even if the data 
errors are not strictly gaussian, as long as they have a ‘reasonably’ symmetric unimodal distribution. 

Equation (19) provides a very simple diagnostic of the overall global consistency of an assimilation 
algorithm. A number of authors (Ménard and Chang, 2000, Talagrand and Bouttier, 2000, Cañizares et al., 
2001, see also Bennett, 2002) have implemented this diagnostic on various systems. Tests have been 
performed on the operational 4D-variational assimilation system of the European Centre for Medium-range 
Weather Forecasts for January 2003. The dimension of the state vector of the minimization is about n ≈ 
8x106, while the number p of observations fluctuates about 1.4x106 (the assimilation window is 12 hours). 
The ratio 2J(xa)/p, which should statistically be equal to 1, turns out to fluctuate in the range 0.40-0.45. This 
means that the covariance matrix E(ddT) is largely overestimated by the assimilation system. When 
excluding satellite observations from the assimilation (which reduces the number of observations to about 2-
3x105), the ratio 2J(xa)/p takes values in the range 1.-1.05, much closer to overall consistency. It is therefore 
reasonable to assume (although, according to the remark made above, it cannot be rigourously proved) that 
the overestimation of E(ddT) is due to misspecification of the covariance matrix of the errors in satellite 
observations. In the ECMWF system (as in most other meteorological assimilation systems), errors in 
satellite observations are assumed to be spatially uncorrelated. This is unlikely to be true, at least for 
observations performed by a same instrument, and other tests (Thépaut pers. com.) suggest the errors are 
correlated over distances of a few hundred kilometres. Neglecting spatial correlation would lead to giving 
too large a weight to satellite observations in the analysis. In order to compensate for that effect, an 
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expedient solution has been to artificially increase the assumed variance of the errors. This probably explains 
the significant overestimation of E(ddT) in the ECMWF system. 

Similar results, with similar conclusions, have been obtained by other authors for other meteorological 
assimilation systems (Sadiki and Fischer 2000, Payne pers. com.). A different series of diagnotics has 
recently been performed by Weaver et al. (2003), who have applied criterion (19) to a system of variational 
assimilation of oceanographical observations. They performed both three- and four-dimensional 
assimilation. In the three-dimensional system, the ratio 2J(xa)/p is on average equal to 0.9, but varies in the 
range 0.7-1.3. In the four-dimensional system, 2J(xa)/p fluctuates between 0.6 and 0.9. The authors attribute 
the larger inconsistency of the four-dimensional system to the fact that the background error (at the 
beginning of each successive assimilation cycle) is kept at the same value from one assimilation cycle to the 
next, and does not take into account the possibility that the accuracy of the backgrounds is likely to be 
improved by the successive assimilations. As for the large fluctuations of the ratio 2J(xa)/p, the authors 
explain it by significant variations of the actual error in the background, with the result that the pre-specified 
background error covariance matrix may be correct on average (at least in the three-dimensional system), but 
not in individual situations. 

Diagnostics that are similar to the global diagnostic (19), but also more refined, can be defined. The 
objective function (6) will most often be the sum of a number of independent terms, viz., 

 J(ξ)  =  Σk = 1, …, K Jκ (ξ) 

where 

 J k(ξ )  ≡  (1/2) (Γkξ - zk)T Sk
-1(Γkξ - zk) 

In this equation (where again data are assumed to be unbiased), zk is an mk–dimensional component of the 
data vector z (Σkmk = m), and the rest of the notation is obvious. The inverse estimation error covariance 
matrix is easily obtained from equation (5) as 

[Pa]-1  =   Σk  Γk
T Sk

-1 Γk 

Left-multiplying by Pa, and then taking the trace of the result, yield 

 1 = (1/n) Σk  tr(Pa Γk
T Sk

-1 Γk)    

                =  (1/n) Σk  tr(Sk
–1/2 Γk Pa Γk

T Sk
–1/2)  (20) 

where use has been made, for obtaining the last equality, of the fact that the trace of the product of two 
matrices is not modified when the order of the factors is reversed. This expression shows that the quantity 
(1/n) tr(Sk

 –1/2 Γk Pa Γk
T Sk

–1/2) is a measure of the relative contribution of the subset of data zk to the overall 
accuracy of the analysis. Equation (20) (like actually all equations in these notes) is valid in any system of 

coordinates in data and state spaces, and the measure  (1/n) Σk  tr(Sk
–1/2 Γk Pa Γk

T Sk
–1/2) is absolutely intrinsic. 

In particular, given any subset z' of the data vector, its contribution to the objective function is independent 
of whether, in the coordinates used in data space, the errors affecting z' are correlated or not with the errors 
affecting the other components of z. Equation (20) is therefore valid, and can be used as a diagnostic tool, for 
any subset of data in any basis in data space. This defines a powerful and consistent tool, for instance in so-
called Observing System Simulation Experiments, intended at estimating the usefulness of hypothetical 
systems of observations (for a similar, but somewhat different diagnostic, see Fisher 2003). 

It can be further shown (Talagrand, 1999, Desroziers and Ivanov, 2001) that the expectation of the term 
Jk(ξ ) at the minimum of the objective function is equal to 
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 E[Jk(xa)]  =  (1/2) [mk   -  tr(S k
 –1/2 H k Pa H k

T S k
 –1/2)] (21) 

where the same trace appears on the right-hand-side as in equation (20). Equation (21) includes equation 
(19) as a particular case. And it provides the basis for further evaluation of the consistency of an assimilation 
scheme. It suffices to compare the trace of S k

 –1/2 H k Pa H k
T S k

 –1/2, as computed directly ans as determined 
statistically, through equation (21), from results of assimilations. The matrix S k

 –1/2 H k Pa H k
T S k

 –1/2 is 
symmetric non-negative, of order mk. Even for large values of mk, it can be numerically computed, at an 
acceptable cost, through techniques originally developed for generalized cross-validation (Wahba et al. 
1995, Desroziers and Ivanov 2001, Fisher 2003). Desroziers and Ivanov (2001) have shown that, if the 
observation error is supposed to be uncorrelated in space and uncorrelated with the background error, 
equation (21) can be used for estimating the observation and background error variances. This is in essence a 
systematic extension of the already mentioned works by Hollingsworth and Lönnberg (1986), and Daley 
(1993). Along the same lines, Chapnik et al. (2003) have used equation (21) to tune the variances of the 
observational errors in the various channels of the TOVS instrument, carried by the satellites of the NOAA 
series. This has led to a significant change (by a factor 8) of one variance. 

4. Checking Optimality 
The various diagnostics that have been presented in the previous sections allow objective comparison of the 
quality of different assimilation schemes, or evaluation of the internal consistency of a given scheme. They 
say nothing as to the optimality, or otherwise, of a given scheme. The BLUE is defined on conditions of 
statistical unbiasedness and minimum estimation error variance. As a consequence, the estimation error xa –
x, in addition to being unbiased, must be statistically uncorrelated with the DmA difference or, equivalently, 
with the innovation vector. This is expressed by equation (11a), where the second term on the right-hand 
side is the orthogonal projection, in the sense of covariance, of (minus) the background error x - xb onto the 
space spanned by the innovation y - Hxb. The optimality condition is often expressed, in an exactly 
equivalent way, by saying that a sequential algorithm for assimilation is optimal if, and only if, the temporal 
sequence of innovation vectors is unbiased and uncorrelated (Kailath, 1968). 

This optimality condition can be objectively checked against independent observations. Let us consider an 
observation of the form 

 w = Dx +  γ 

where D is a known linear operator, and the error γ is assumed to be unbiased and uncorrelated with the data 
error ζ, and therefore with the innovation d. Optimality of the estimate wa = Dxa of w is equivalent to the 
conditions that it be statistically unbiased 

 E(w - Dxa) = 0 (22) 

and uncorrelated with the innovation 

 E[(w - Dxa)dT] = 0 (23) 

If the unbiasedness condition (S) is usually checked in assimilation systems, the uncorrelatedness condition 
(S), in spite of its simplicity, has so far been rarely used. One of the few examples is a work by Daley 
(1992), who computed the correlation of the innovation sequence for the sequential assimilation system that 
was then in use at the Canadian Meteorological Centre (that system is described by Mitchell et al. 1990). 
Daley found significantly non-zero correlations, reaching values of more than 0.4 for the 500-hPa 
geopotential innovation, at time-lag 12 hours. Similar tests, performed more recently on a system for 
assimilation of oceanographical observations, led to correlation values around 0.3 (Miller pers. com.). It 
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would certainly be very instructive to systematically implement diagnostic (23) on assimilation systems, and 
especially of course on operational systems. 

5. Conclusions 
We have presented, and briefly discussed and illustrated on a few examples, three classes of diagnostics for 
validation and evaluation of assimilation algorithms. 

The first class consists simply in comparison of the fields produced by the assimilation with independent 
data. It provides of course the only objective measure of the quality of an assimilation algorithm, and the 
only way to compare the quality of different algorithms. On the other hand, it says nothing as to the possibly 
optimal character, in any sense, of an algorithm. 

The second class of diagnostics evaluates the internal consistency of an assimilation algorithm, i. e. the 
consistency between the a priori assumed probability distribution (strictly speaking, expectation and 
covariance matrix) of the data error, and the real distribution. This comparison can be done only to the extent 
the real distribution of the error can be known. All the objective information about the data error contained 
in the data themselves lies in the overdeterminacy of those data. This information is entirely described by the 
observed probability distribution of the innovation vector (or of any quantity, such as the data-minus-
analysis difference, that is a function of the innovation). This second class of diagnostics therefore always 
reduces to a comparison, either direct or indirect, between the a priori assumed and the a posteriori observed 
probability distributions of the innovation. However, redundant parameters are present in the a priori 
specification of the probability distribution, and in any observed inconsistency can always be mathematically 
attributed to a misspecification of those redundant parameters, without consequences for the result of the 
assimilation, nor even for the corresponding estimated estimation error. This second class of diagnostics can 
therefore be useful only if independent hypotheses can be made about the probability distribution of the data 
error. Such independent hypotheses have of course always been made (often implicitly) since the very 
beginnings of the development of assimilation techniques. Systematic use of statistically reliable diagnostics 
of the innovation vector, which must go together with a critical assessment of independent hypotheses, will 
continue to be extremely useful. Subjective judgment, aided by experience, will always be fundamental here. 

The third class of diagnostics is intended at checking the optimality of a linear least-error-variance 
assimilation scheme. For such a scheme, optimality is equivalent to the condition that the estimation error 
must be statistically unbiased, and uncorrelated with the innovation. It can be objectively checked provided 
independent data are available. For some resaon, this type of diagnostic has been rarely used so far, and it 
would certainly be very useful to systematically implement it on linear assimilation schemes. 

All the developments in these notes have been restricted to linear statistical estimation, which leads to the 
BLUE defined by equations (2) and (5). It may be useful to briefly discuss whether, and how, the above 
diagnostics can be used in the more general context of non-linear bayesian estimation. The first class of 
diagnostics, which only compares estimated fields with independent data, has of course nothing to do with 
the estimation process in itself, and can be used as such for evaluating and comparing estimation methods of 
any kind. 

Concerning the second class, the fact that objective information about the data errors lies in the 
overdeterminacy of the data is always true. To the extent the data overdetermine the unknown state of the 
system, it will always be possible to extract from those data, by appropriate algebraic elimination, the 
analogue of the linear innovation, i. e. quantities that depend only on the data error, and not on the unknown 
state. And it will always be possible to compare the a priori assumed and the a posteriori observed 
probability distributions of that generalized innovation. It is not absolutely clear on the other hand whether it 
will always be possible to ‘explain out’ an observed inconsistency by attributing it to misspecification of 
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redundant parameters in the data error probability distribution. The author does not know of  any rigourous 
proof of that fact, but it seems to entirely result from the numerical dimensions involved (m and n), and not 
from the linearity of the estimation scheme (even though the proof given above is linear). 

The third class of diagnostics, on the other hand, which is based on minimization of the variance of a linear 
combination of the data, i. e. on an orthogonal projection, is linear by essence. It is of course a check of 
optimality of the estimation in the case the data error is known a priori to be gaussian, but this is so because 
gaussianity as such implies linearity. And even in the gaussian case, the orthogonality criterion provides a 
check of the optimality of the estimate xa, not of the correctness of the corresponding estimated estimation 
error covariance matrix Pa. More generally, the conditional probability distribution of the state vector, given 
the data, depends on the probability distribution of the data error. Unless it is possible to objectively check 
that the latter has been correctly specified (and it is difficult to imagine how that could be done), it will never 
be possible to check the correctness of the probability distribution produced by the estimation process. 
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