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Abstract

Incremental 4D-Var and the ensemble Kalman filter have different approaches to approximating the time-evolution of
the covariances which approximately characterise the probability distribution of possible states. The two methods are
compared for application to NWP, both for their expected properties, and for ease of application.

1. Introduction

No practical data assimilation scheme can be fully optimal; approximations are essential. The most
appropriate will depend on the application. In this paper | limit myself to comparing schemes for application
to future numerical weather prediction (NWP) configurations, as envisaged for a national meteorological
service such as the Met Office. In the literature one can find several "flavours' of four-dimensional
variational assimilation (4D-Var), and many of ensemble Kalman filters (EnKF); I limit the main part of this
comparison to incremental 4D-Var like that being developed in the Met Office (described further in section
2), and EnKF methods with a moderate ensemble size and covariance localisation (described further in
section 3).

An ideal assimilation method would consider an arbitrary probability distribution function (pdf) describing
our knowledge about the current state (figure 1). However for NWP it would be impossible even to define
such a pdf, let alone calculate its time-evolution. Incremental 4D-Var and the EnKF both make (in different
ways) the assumption that the pdf which is time-evolved can be approximated by a Gaussian, and hence
represented by its mean and covariance. So the key to this comparison is their different methods of
representing, and calculating the time-evolution, of covariances. Section 4 compares the expected properties
of 4D-Var and EnKF is this light, while section 5 discusses more practical details of their implementation.
Section 6 discusses the future.

chaotic growth + model error
increase spread

Figure 1 Schematic showing the ideal time-evolution of a general pdf
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2. Incremental 4D-Var

Incremental 4D-Var uses a simplified linear model to calculate the evolution of perturbations to a (more
detailed) estimate of the atmospheric state, and searches for the perturbation which gives the best fit to
observations and prior knowledge. It was introduced by Courtier et al. (1994), largely justified as a cost-
saving approach for making 4D-Var practicable. Lorenc (2003a) derives it differently; the simplified
perturbation forecast (PF) model is introduced as part of a transformation describing the four-dimensional
structure of error covariances, an extension of the transformed control variable approach used in 3D-Var.
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Figure 2 Schematic showing the modelled 4D pdf in 4D Var.

Incremental three-dimensional variational assimilation (3D-Var) finds the increment Jx to a guess field x*
which minimises

)= 1x- o Y Bl ) b -y YRV G-y0) ®

where dx” isthe difference between the background forecast x’ and the guess x¢, and

Xx=x°+0x - (2)
The model estimate of the observed valuesis given by

y=H(x). 3)

Instead of direct minimisation of (1), it is normal to transform control variables, finding vV which minimises
J@)= v v Ly RO G -y) ®

x=x%+Uyv- )
If we choose U such that

B, =UU" (6)
then minimising (4) is equivalent to minimising (1). But in practice we do not have an independent means of

representing B and (6) is better thought of as a way of modelling the three-dimensional multivariate
structure of B | via a further factorisation of U (e.g. Lorenc et al. 2000). The same approach can be
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extended to the time dimension. Consider afinite time interval covering n assimilation cycles, and define a
set of four-dimensional vectors denoted by underlining, e.g.

7 (7)

Then, with appropriate extensions to the interpolations in /7 and H , the four-dimensional versions of (1)
and (3) have identical form:

J(@x)=16x-8x" ) B Bx-ox } 1l -y JR G -y) ®)

x=x°+0x. (9)

The quadratic form of (8), using the four-dimensional covariance B@), is only appropriate if the pdf is

approximately Gaussian, and the time-evolution of perturbations approximately linear. Modern NWP
models are capable of representing small scales which can grow rapidly (compared to the time-window of
4D-Var), before the growth is limited as they use up their forcing. 4D-Var will not work with such a model.
It is necessary to filter out scales with nonlinear, potentially chaotic, behaviour. We do this with a
simplification operator .S'. For an NWP model the most obvious simplification is a reduction in resolution
(this was the explanation for S given by Ide et al. 1997), but it is also useful to include simplifications to the
representation of physical processes such as cloud. We introduce a simplified model state w , and a
simplification operator S that is usually linear, but may have nonlinear terms, for instance in the treatment
of moisture variables. We are assuming that the desired analysis can be expressed in term of increments to

this state:
we = s)
w = S(x) : (10)

ow = 5()-5*)

To use the simplified increment we need to be ableto add it to x®:
Xx=x°+S"ow- (11)

The incrementing operator §~/ is the generalised inverse of S ; it needs extra assumptions about what to do
with the filtered scales and variables. The simplification is chosen such that the time-evolution of the filtered
perturbation is approximately linear; we can use a perturbation forecast (PF) model M to calculate a four-
dimensional OW . We use g~/ (applied at each time) and M, along with the 3D-Var control variable
transform U , to define a four-dimensional control variable transform:
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x=x°+S5S"MUv. (12)

So smplified incremental 4D-Var replaces the minimisation of (8) by minimising:

J(V):%Vrv+%6_—z")R'lQ_—X"). (13)

Instead of the (impracticable) full nonlinear evolution of the non-Gaussian pdf, incremental 4D-Var chooses
a simplified sub-set of variables whose four-dimensional pdf can be approximated by a Gaussian, and
evolves them over a finite time-window using a linear PF model, to give an implicit four-dimensional
covariance model. From the simplified variables at any time it can diagnose increments to the full model

using S’ , and calculate model predictions of the observations using H ; these latter operations may be
nonlinear (asin 3D-Var), aslong as the minimisation of (13) is possible.

3. Ensemble Kalman Filter

The basic idea of the EnKF (Evensen 1994) is to construct an ensemble of forecast states {xf},(z =1,. ..,N)

such that the mean of the ensemble is the best estimate of the population mean, and the sample covariance is
agood estimate of the forecast error covariance of this best estimate.

________
- ~

Mean & covariance of ensemble members
define evolved pdf -

Figure 3 Schematic showing the time-evolution of the pdf in the EnKF

It is convenient to introduce a matrix notation for the ensemble, with X having as columns the normalised
deviations from the ensemble mean:

1 — j— —
X:ﬁ@l—x X, =X - XN—X)- (24)
These perturbation matrices are estimates of a square-root of the covariances:
P/ =X'X"" (15)

The time evolution of the covariances is done by evolving al the individual ensemble members using the full
NWP model (figure 3). For this to be affordable for the NWP models and computers envisaged for the next
decade, we are probably limited to ensemble sizes O(100). Lorenc (2003b) showed that this can give
significant sampling errors in the estimated covariances; covariances near zero are regularly estimated as
large as 0.2 (figure 4). If (asin NWP systems) the modelling domain is large compared to the typical
correlation scale, then there will be many covariances near to zero, and the sampling errors will degrade the
anaysis.
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To overcome this we use covariance localisation. A correlation function C is constructed which is near one
where the ensemble covariances are significant, but which is zero where they are expected to be mainly
noise. The Kaman filter equations are then implemented using a covariance formed as an element by
element Schur (aka Hadamard) product between these matrices (figure 5):

P/ =CoP/. (16)

The Kalman filter equations contain terms H'P/H and H'P/, which can be thought of as error
covariances involving the predictions of the observed variables. They can be obtained by augmenting the

model variables with y = H (x) and generalising (14) (15) and (16). That is, we apply the (possibly
nonlinear) observation operators to each ensemble member, and calculate covariances involving Y. Note
that this is treating the pdf of y as Gaussian, whereas 4D-Var allows for non-Gaussian pdf caused by

nonlinear H .
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Figure 4 Ensemble estimate covariances with a point at the origin, for ensembles of 100 samples taken from a
. . . . . 2 ,
population whose covariance, shown in the solid curve, is exp%‘r /2 > E with a = 500 km. (Adapted from
a
Lorenc 2003b).
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Figure 5 As figure 4, with the ensemble covariances modified with the Schur product correlation C
(shown dashed). The Schur product of C with the population covariance is shown in the lowest line.
(Adapted from Lorenc 2003b).
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As well as using these covariances to estimate the best analysis, the ensemble Kalman filter also produces an
analysis ensemble, approximating the analysis error covariance. (This is an advantage over 4D-Var, which
never explicitly represents the covariances, and does not readily generate an ensemble.) There are two
approaches used:

* Intheoriginal EnKF, an ensemble of analyses are produced each using a different set of pseudo-random
perturbations on the observed values.

* In the ensemble square-root filter methods (EnSRF: Tippett et al. 2003), the forecast ensemble

perturbations X/ aredi rectly transformed into an analysis ensemble X/, This reduces errors for small
ensembles due to noisy estimates of covariances (Whitaker and Hamill 2002). If we are to use
covariance localisation, the transform method is only practicable if observations are processed
sequentially.

4. Assimilation characteristics

From their different modelling of the covariances, as described above, we can compare the expected
characteristics of 4D-Var and EnKF assimilations. We do this with the help of Table 1, adapted from Lorenc
(2003Db).

Table 1 Summary of the assimilation characteristics of the ensemble Kalman filter compared with those
of 4D-Var.

Incremental 4D-Var

EnKF

Forecast covariances

Modelled at t, (usually isotropic),
time evolution for a finite time-
window represented by linear and
adjoint models.

Sampled by ensemble (flow-
dependent). Noisy: must be
modified to have compact support
using Schur product.

Ability to fit detailed observations.

Limited by resolution of simplified
model.

Tendencies fitted within time-
window.

Limited to fewer data (in a region)
than ensemble members.
Tendency information only
extracted if obs properly fitted.

Balance constraints

Can be imposed through a
dynamical design to the variable
transform, or a separate balance
penalty.

Only imposed if each forecast in
the ensemble is balanced. Lost
slightly in Schur product.

Nonlinear observation operators

Allowed if differentiable. (Results
uncertain if pdf is bimodal in
range of interest.)

Allowed, but resulting pdf
modelled by Gaussian.

Non-Gaussian observational
errors

Allowed if differentiable. (Results
uncertain if pdf is bimodal in
range of interest.)

Not allowed. Prior QC step is
needed.

4D-Var only represents the time-evolution of covariances over a short time-window, limited so that the
linear PF model remains a good approximation. The EnKF, like the Kalman filter, is designed to continue
indefinitely.

The EnKF covariances are noisy. Unless a very large ensemble is used, or the analysis domain is limited,
then steps must be taken to avoid using noisy estimates of the many covariances which are actually near
zero. Introducing a Schur product covariance C is a convenient way of doing this. But if, because of a
small ensemble, it is relied on significantly to modify many covariances, C becomes an arbitrary tuning
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factor. Note that C must also define inter-variable correlations, including the augmented model variables
such as radiances, so its definition is not trivial.

4D-Var can only fit information resolved by the PF model. The basic EnKF can only fit as many
independent pieces of information as there are ensemble members. Covariance localisation relaxes this
constraint, but the way the algorithm behaves when trying to fit dense detailed observations is determined by
the (arbitrary) covariance C.

Variational methods can easily incorporate (linear) balance constraints, either directly in the covariance
model (by giving unbalanced modes small or zero variances), or in an additional so-called J_ term which

can be thought of as modifying the covariance model. If the ensemble members are balanced, the ensemble
covariance will similarly have small or zero variance in unbalanced modes. But, because of the small
ensemble size, it also has small or zero variance in some important balanced modes, and we have to apply
covariance localisation to allow these to be analysed. The localisation aso removes the balance constraint.

Variational methods can cope with well-behaved nonlinearities in 1, and with non-Gaussian observational
error pdfs. By simultaneously handling these effects for nearby observations, variational methods are
capable of alowing for the interaction of their non-Gaussian pdfs. For instance scatterometer winds can be
de-aliased consistently, and quality control decisions take account of nearby observations which support each
other. The EnKF can use a nonlinear £, but it treats the resulting pdf as a Gaussian. (Figure 6 gives an
example.) So it cannot properly allow for the mutual support of non-Gaussian information from adjacent
observations.

Forecast (u,v). Analysec
sd(U)=sd(v)=2. N

Figure 6(a) 1000 member ensemble of forecast wind vectors, with mean (2,4) and standard deviation
(2,2). (b) Ensemble of wind vectors resulting from an EnKF analysis of an error-free observation of wind
speed; the circle shows the observed value, 3. The large dots show the mean of each distribution, and the
straight lines in (b) show its eigenvectors. If, with this observation, 4D Var had other incomplete
information such as a perfect observation of wind direction, it could combine them optimally, whereas the
EnKF could not since the pdfs are non-Gaussian. (Adapted from Lorenc 2003b).

4D-Var represents the evolving pdf by its mean (evolved by the main NWP model), and a covariance
(evolved by the PF model). This approach gets into difficulties if we have an NWP model which can
represent significant features about which we are uncertain. For instance if there are scattered showers, but
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we have no radar and do not know precisely where they are, then the mean state has a smooth distribution of
rainfall, unlike any actual realisation. It would be difficult to design a model which could represent and
evolve such a mean state, and also represent and evolve the actual showers when we have detailed
observations. If we have significant uncertainty in the model state, then ensemble methods are a natural
approach. The forecast model need only evolve actual states; the smooth mean state in uncertain situations
comes from the ensemble mean.

5. Ease of implementation

We do not currently have models which evolve the mean of the pdf, as described above. Incremental
4D-Var makes do with an operational NWP model, and a ssimplified PF model. Often the PF model is based
on the tangent-linear version of the full model, with simplification coming from a reduced resolution and
omission of some processes. We also require the adjoint of the PF model. Developing a model for the EnKF
is much simpler; the model can be physically based to evolve actua realisations of resolved features.

Assuming we need O(100) iterations in 4D-Var, and O(100) members in the EnKF, the costs of running the
model should be similar. But the 4D-Var runs are done sequentially, so each PF and adjoint model run must
be parallelised, whereas the EnKF can be implemented with each model running independently. Such an
EnKF needs to redistribute the model states over the processors every time covariances are needed from
(15); 4D-Var needs a similar redistribution in its covariance model each iteration.

The processing of observations can proceed independently, in paralel in 4D-Var. In the EnSRF they must
be processed sequentially - possibly a problem for dense observations. If the perturbed observation EnKF is
used, then batches of observations can be processed in parallel (Keppenne et al. 2002), but the attractive
simplicity of the EnSRF agorithmislost.

In principle the EnKF can be run indefinitely. In practice some tuning is needed to make sure that the
covariances stay readlistic; this may take the form of a ssimple inflation, and/or some other method of allowing
for model errors. 4D-Var needs an independent method of calculating parameters in its error covariance
model (this may even be an EnKF).

In mesoscale NWP there are usually significant uncertainties in the larger scales. Equivalently, a limited-
area model (LAM) forecast can have significant errors propagating across its boundaries, eventually
affecting the errors for the whole area. 4D-Var only runs for a finite time-window, and the area can be
chosen to be sufficiently large that this propagation does not occur. Simple methods of characterising
boundary errors then suffice. But if one attempted to run a LAM EnKF indefinitely, then the specification of
the boundary uncertainties would eventually dominate the interior covariances. Probably a LAM EnKF
would need to be nested in aglobal ensemble; little has been published on this.

6. The way forward

There is a tendency for NWP systems to expand to fulfil many simultaneous roles. We can afford to run
high-resolution forecast models to several days, and would like such a forecast to give a good "nowcast" of
short-period details, as well as a good forecast of synoptic scales. We want to perform detailed quality
control of individual observations, at the same time as a global estimation of satellite biases. We want to fit
detailed moisture fields from remotely sensed data, and deduce the larger-scale advection fields from their
observed motion. Variational methods have facilitated this tendency; much of the recent improvement in
global NWP is due to variational processing of satellite data (Simmons and Hollingsworth, 2002). A single
EnKF could never have such a scope. The way forward for such a comprehensive NWP system is to

218



LORENC, A.: RELATIVE MERITS OF 4D VAR AND ENSEMBLE KALMAN FILTER

enhance the 4D-Var approach with some of the attributes of the EnKF, so that some aspects of the
covariances can be evolved indefinitely. Thisisan active area of research.

But such a system gets ever more complex, and has to make compromises. For particular tasks with a more
restricted scope the EnKF is simpler, and may behave better. For instance it has been proved to work well
for re-analysis of sparse observations (Whitaker et a. 2003), and in convective scale assimilation when the
boundaries and larger-scales are unimportant (Snyder and Zhang, 2003). Other tasks such as quality control
and bias correction can aso be done by discrete systems. NWP would require a range of systems, many
using ensembles; the complexity problem then being how to link them together consistently.
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