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ABSTRACT

A multi-model ensemble-based system for seasonal-to-interannual prediction has been developed in a joint European
project known as DEMETER (Development of a European Multi-Model Ensemble System for Seasonal to Interannual
Prediction). The DEMETER system comprises seven global atmosphere-ocean coupled models, each running from an
ensemble of initial conditions. Comprehensive hindcast evaluation demonstrates the enhanced reliability and skill of the
multi-model ensemble over a more conventional single- model ensemble approach. In addition, innovative examples
of the application of seasonal ensemble forecasts in malaria and crop forecasting processes are discussed. The strategy
followed in DEMETER deals with important problems as communication across disciplines, downscaling of climate
simulations, and use of probabilistic forecast information. This illustrates the economic value of seasonal-to-interannual
prediction for society as a whole.

1 Introduction

Seasonal-timescale climate predictions are now made routinely at a number of operational meteorological
centres around the world, using comprehensive coupled models of the atmosphere, oceans, and land surface
(Alves et al., 2002; Kanamitsu et al., 2002; Mason et al., 1999; Stockdale et al., 1998). They are clearly of
value to a wide cross section of society, for personal, commercial and humanitarian reasons (Hartmann et al.,
2002b; Thomson et al., 2000). However, the successful transition from research activity to full operational
practice has led some potential users of seasonal forecasts to have unrealistic expectations of what is practicable
(”My daughter is getting married in six months time - should I order a marquee for the wedding reception,
or will it be dry that day?”). Notwithstanding predictable signals arising from atmosphere-ocean coupling,
the overlying atmosphere is intrinsically chaotic, implying that predicted day-to-day evolution of weather is
necessarily sensitive to initial conditions (Palmer, 1993; Shukla, 1998). In practice, the impact of such initial-
condition sensitivity can be determined by integrating forward in time ensembles of forecasts of coupled ocean
atmosphere models; the individual members of the forecast differing by small perturbations to the starting
conditions of the atmosphere and underlying oceans. The phase-space dispersion of the ensemble gives a
quantifiable flow-dependent measure of the underlying predictability of the flow.

However, if uncertainties in initial conditions are the only perturbations represented in a seasonal-forecast
ensemble, then the resulting measures of predictability will not be reliable; the reason being that the model
equations are also uncertain. More specifically, although the equations for the evolution of climate are well un-
derstood at the level of partial differential equations, their representation as a finite-dimensional set of ordinary
differential equations, for integrating on a digital computer, inevitably introduces inaccuracy.

At present, there is no underlying theoretical formalism from which a probability distribution of model uncer-
tainty can be estimated – as such a more pragmatic approach must be sought. One approach relies on the fact
that global climate models have been developed somewhat independently at different climate institutes. An
ensemble comprising such quasi-independent models is referred to as a multi-model ensemble.
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In order to advance the concept of multi-model ensemble prediction and to explore the utility of such a forecast
sytem for potential end-user, the DEMETER project (Development of a European Multi-Model Ensemble Sys-
tem for Seasonal to Interannual Prediction) was conceived, and successfully funded under the European Union
Vth Framework Environment Programme. A description of the DEMETER coupled models, the DEMETER
hindcast integrations, the archival structure, and the common diagnostics package used to evalulate the hind-
casts, is described in section 2. Some meteorological and oceanographic results, comparing these single and
multi-model ensemble hindcasts are described in section 3. As mentioned at the beginning of this paper, there
is considerable interest amongst a wide cross section of society, for seasonal climate forecast information.
However, as also mentioned, some users will be disappointed in what can realistically be achieved, whilst
others may find great economic value in the predictions. How can one distinguish viable applications from
unrealistic applications? Whilst it is easy to dismiss as unrealistic the potential customer who wants to know
whether it will rain in the afternoon six months from today, is the demand of an agronomist who wants to
use seasonal predictions to predict crop yield six months ahead, and whose crop models require daily weather
parameters as input, also unrealistic?

A general methodology for assessing the value of ensemble forecasts for such users was discussed in Richardson
(2000). In particular, if these users have quantitative application models requiring forecast weather informa-
tion as input (Hartmann et al., 2002a), these models can be directly linked to the output of individual members
of the forecast ensemble. The net result is a probability forecast, not of weather as such, but of a variable
directly relevant to the user. Hence, in the case of the agronomist, the ensemble will produce a probability
distribution of crop yield. The potential usefulness of the ensemble forecasts can then be judged by asking
whether the forecast probability distributions of crop yield are sufficiently different from climatological prob-
ability distributions, for the agronomist to be able to make decisions or recommendations e.g. on the types of
crop to plant. In the DEMETER project, there are applications partners both in agronomy and also in tropical
disease prediction. Some of the results of these end-users in DEMETER are described in section 4. As a result
of DEMETER, real-time multi-model ensemble seasonal predictions are now routinely made at the European
Centre for Medium- Range Weather Forecasts (ECMWF). This development, and other plans that derive from
DEMETER, are outlined in the concluding section of this paper.

2 The DEMETER system

2.1 Coupled models and initialization procedures

The DEMETER system comprises 7 global coupled ocean-atmosphere models. A brief summary1 of the
different coupled models used in DEMETER is given in Table 1.

For each model, except that of the Max Planck Institute (MPI), uncertainties in the initial state are represented
through an ensemble of nine different ocean initial conditions. This is achieved by creating three different
ocean analyses; a control ocean analysis is forced with momentum, heat and mass flux data from the ECMWF
40-year Re-Analysis2 (ERA-40 henceforth), and two perturbed ocean analyses are created by adding daily
wind stress perturbations to the ERA-40 momentum fluxes. The wind stress perturbations are randomly taken
from a set of monthly differences between two quasi-independent analyses. In addition, in order to represent
the uncertainty in SSTs, four SST perturbations are added and subtracted at the start of the hindcasts. As in the
case of the wind perturbations, the SST perturbations are based on differences between two quasi-independent

1Detailed information on the models and the initialization procedures can be found on the DEMETER web site:
http://www.ecmwf.int/research/demeter/general/docmodel/index.html.

2ERA-40 intends to produce a global analysis of variables for the atmosphere, land and ocean surface for the period 1958-2001.
More information is available in http://www.ecmwf.int/research/era.
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Partner
atmospheric component ocean component

model
resolution

model
resolution

horizontal vertical longitudinal latitudinal vertical

CERFACS ARPEGE T63 19 L OPA 8.2 2.0
�

2.0
�

31 L
ECMWF IFS T95 40 L HOPE-E 1.4

�

0.3
�

- 1.4
�

29 L
INGV ECHAM-4 T42 19 L OPA 8.1 1.4

�

0.3
�

- 1.4
�

29 L
LODYC IFS T95 40 L OPA 8.2 2.0

�

2.0
�

31 L
Météo-France Arpege T63 31 L OPA 8.0 182 GP 152 GP 31 L

Met Office HadCM3 2.5
�

x 3.75
�

19 L HadCM3 1.25
�

0.3
�

- 1.25
�

40 L
MPI ECHAM-5 T42 19 L MPI-OM1 2.5

�

0.5
�

- 2.5
�

23 L

Table 1: Horizontal and vertical resolution of the atmospheric and ocean components of the seven individ-
ual global coupled models forming the DEMETER multi-model system.

SST analyses. Atmospheric and land-surface initial conditions are taken directly from the ERA-40 re-analyses.
A separate ensemble initialization procedure is used for the MPI model.

2.2 Definition of hindcast experiments

The performance of the DEMETER system has been evaluated from a comprehensive set of hindcasts over a
substantial part of the ERA-40 period. Only hindcasts for the period 1987 to 1999 will be discussed in this
paper.

In order to assess seasonal dependence on skill, the DEMETER hindcasts have been started from 1st February,
1st May, 1st August, and 1st November initial conditions. Each hindcast has been integrated for 6 months and
comprises an ensemble of 9 members. In its simplest form, the multi-model ensemble is formed by merging
the ensemble hindcasts of the seven models, thus comprising 7x9 ensemble members. To enable a fast and
efficient post-processing and analysis of this complex data set, much attention was given to the definition of
a common archiving strategy for all models; the ECMWF’s Meteorological Archival and Retrieval System
(MARS) was used for this purpose. A subset of atmosphere and ocean variables, both daily data and monthly
means have been stored into MARS. Special attention was given to the time-consuming task of ensuring that
all model output complies with agreed data formats and units.

A significant part of the DEMETER data set (monthly averages of a large subset of surface and upper-air fields)
is freely available for research purposes through an online data retrieval system installed at ECMWF3.

2.3 Diagnostics and evaluation tools

The need to provide a common verification methodology has been recognized by the World Meteorological
Organization Commission for Basic Systems (WMO-CBS), and an internationally accepted standardized ver-
ification system (SVS) is being prepared. A comprehensive verification system to evaluate all DEMETER
single models as well as the multi-model DEMETER ensemble system has been set up at ECMWF. It is run
periodically to monitor hindcast production, to check correct archiving and to calculate a common set of diag-
nostics.

3Model hindcasts can be retrieved in GRIB and NetCDF formats from http://www.ecmwf.int/research/demeter/data. A tool to
display the fields is also available.
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The DEMETER verification system is designed with a modular structure so as to easily incorporate new eval-
uation tools provided by project partners or other sources. The basic set of diagnostics is summarized as
follows:

� Global maps and zonal averages of the single-model bias are shown relative to a model climatology.
Hindcast anomalies are computed by removing the model climatology for each grid point, each initial
month, and each lead time from the original ensemble hindcasts. A similar process is used to produce
the verification anomalies.

� Time series of specific climate indices, e.g. related to area averaged SSTs, precipitation and circulation
patterns are displayed.

� Standard deterministic ensemble mean scores, such as anomaly correlation coefficient (ACC), root mean
square skill score (RMSSS), and mean square skill score (MSSS) are shown.

� Probabilistic skill measures: reliability diagrams, relative operating characteristic (ROC) score, Brier
score, ranked probability skill score (RPSS), and potential economic value curves are calculated and
displayed. Significance tests are applied to most of the skill measures.

� The skill of single-model ensembles is compared with that of multi-model ensembles using scatter di-
agrams of area-averaged skill measures and probability density functions (PDFs) of grid-point skill
scores.

Both anomalies and scores have been computed using a cross-validation ”leave-one-out” method. To generate
the anomaly or the score for a particular time t, only data at other times different from t have been used.

The main verification data set used in this system is ERA-40. This is consistent with the general concept
of producing the DEMETER hindcasts, in which ERA-40 is used as forcing for the ocean analyses and as
atmospheric and land-surface initial conditions. Effectively, it is assumed that we are ”living in the ERA-40
world”. However, because of the modularity of the validation system, it is possible in principle to validate the
model data with more than one verification data set. This is particularly useful in the case of precipitation.

3 Hindcast skill assessment

A sample of results from the DEMETER standard verification system is presented in this section. To view a
more comprehensive set of verification diagnostics the reader is referred to the DEMETER website4.

The scientific basis for seasonal atmospheric prediction relies on the premise that the lower boundary forcing,
in particular SST, can impart significant predictability on atmospheric development (Palmer and Anderson,
1994). Thus, one of the pre-requisites for successful seasonal forecasts is the ability to represent and predict
accurately the state of the ocean. A basic problem, faced when attempting to predict SST with coupled models,
is the bias in the model forecasts, which may be comparable to the magnitude of the interannual anomalies to be
predicted. Since SSTs in the tropical Pacific are a major source of predictability in the atmosphere on seasonal
timescales, model performance in the tropical Pacific is of particular interest. To demonstrate the typical level
of skill in this area, Table 2 shows the anomaly correlation coefficient (ACC) of the ensemble mean for the
single-model ensembles and the multi-model ensemble for the SSTs averaged over the Niño-3.4 area. The
correlation has been computed for the 1-month and 3-month lead hindcasts starting in February, May, August,
and November. Results suggest that the single-model ensembles generally perform well as ”ENSO prediction”

4http://www.ecmwf.int/research/demeter/verification/index.html
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Model
1-month lead 3-month lead

Bias / K ACC Bias / K ACC

DEMETER multi-model – 0.95 – 0.91
CERFACS -0.38 0.93 0.00 0.89
ECMWF -0.36 0.96 -0.70 0.90

INGV -0.05 0.90 -0.03 0.84
LODYC -1.03 0.94 -1.53 0.89

Météo-France -0.10 0.93 0.38 0.90
Met Office -0.48 0.91 -0.52 0.89

MPI -1.99 0.85 -3.27 0.72
Persistence – 0.80 – 0.56

Table 2: Ensemble-mean bias and anomaly acorrelation coefficient (ACC) for the 1-month and 3-month
lead seasonal average of sea surface temperature over the Niño 3.4 area calculated using all start dates for
the years 1987-1999. Note that the bias for the multi-model ensemble and the persistence hindcast are not
defined since the multi-model ensemble is based on single-model anomalies, which are constructed with
regard to the single-model bias, and persistence uses observed anomalies.

systems. For the sake of comparison, the ACC for a persisted-SST hindcast has been included. This hindcast
is made by persisting initial SST anomaly for the six months corresponding to the coupled model integration.
Both, the multi-model ensemble and the single-models perform better than persistence, especially in the 3-
month lead time range. In addition, note the high correlation of the multi-model ensemble for both lead times,
proving it to be the most skilful system for the 3-month lead hindcasts. The coupled model climate may differ
from the observed climatology as a result of model ocean-atmosphere interactions. The bias of the single-
models is generally in the range of

�
1 K (Table 2). These are typical figures for present leading coupled

models. As is the case for most variables and areas, there appears to be no clear relationship between bias and
anomaly forecast skill, though this is a topic that needs further investigation.

Figure 1 shows 1987-1999 time series of ACC of precipitation for all single-models and the multi-model
ensemble, for summer (JJA, May start date) over the tropics (Fig. 1a) and winter (DJF, November start date)
over the northern extra-tropics (Fig. 1b). The skill in the northern extra-tropics is considerably less than in
the tropics. In both regions the variability in prediction skill, both from year to year and between different
models is clearly evident. Evidence of higher skill during ENSO events is provided by relatively large ACC
for 1988 and 1997 (Fig. 1). The skill in the northern extra-tropics is considerably less than in the tropics.
In both regions the variability in prediction skill, both from year to year and between different models is
clearly evident. Evidence of higher skill during ENSO events is provided by relatively large ACC for 1988
and 1997 (Fig. 1). This is consistent with the link between ENSO activity and seasonal predictability found
in many studies (e.g. Brankovic and Palmer (2000)). In general, the identity of the most skilful single model
varies with region and year. Finally, this figure illustrates the relatively skilful performance of the multi-model
ensemble. In most years the multi-model ensemble skill is close to the best single-model skill and is the most
skilful when performance is averaged over all years. This highlights the greater reliability of the multi-model
ensemble system.

To further summarize atmospheric hindcast skill, Figure 2 shows indices of the winter (DJF, November start
date) Pacific North American (PNA) and North Atlantic Oscillation (NAO) patterns for the multi-model en-
semble. The indices are computed by projecting every ensemble member anomaly onto a pre-defined pattern.
To compute the reference patterns, an empirical orthogonal function (EOF) analysis of the 500-hPa geopoten-
tial height has been performed for the winter monthly mean anomalies using NCEP re-analyses for the period
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Figure 1: Time series of the ensemble mean anomaly correlation coefficients for the multi model (thick red
bars) and all individual models (thin bars; ECMWF: blue, Météo-France: orange, Met Office: green, MPI:
cyan, LODYC: pink, CERFACS: grey, INGV: yellow). a: 1-month lead summer (JJA) precipitation in the
tropics (latitudinal band of 30 � S - 30 � N), b: 1-month lead winter (DJF) precipitation in the northern extra-
tropics (latitudinal band of 30 � N - 90 � N). Additionally, the time average over the whole period 1987-1999 is
shown at the end of each plot.

1949-2000. The EOF analysis was carried out using data over the regions 20
�

N - 87.5
�

N and 110
�

E-90
�

W
for the PNA and 20

�

N - 87.5
�

N and 90
�

W -60
�

E for the NAO, and the leading EOF retained. The spatial
covariance between the monthly anomaly patterns was then computed for every single member of the hind-
cast ensemble and the reference pattern was computed. The monthly covariances were averaged to produce
seasonal means. Figure 2 displays the index against time using a box-and-whisker representation in which the
central box and each whisker contain one third of the ensemble members. The value obtained computing the
spatial covariance between the reference pattern and the ERA-40 anomalies is also displayed. Comparison of
the interannual variations of ERA-40 and ensemble-mean values gives a visual impression of ensemble mean
hindcast skill. The verification lies within the ensemble range in every case for the PNA index and in all but
one case for the NAO index. Table 3 shows the correlation between the two time series for the multi-model
and the single-model ensembles. The multi-model ensemble shows the highest correlation of all the models
for the NAO index and one of the highest for the PNA index. In addition, the multi-model ensemble correla-
tion can be considered non-zero with a 95% confidence level using a t-test, which is not always the case for
the single-model ensembles. It should be taken into account that scores based on indices are less robust than
scores based on large area correlations, when calculated with short time series. The high PNA correlation for
some single models may be explained by the exceptionally good predictions for the 90s, in particular 1994 and
1997. In fact, scores for hindcasts carried out over periods longer than 13 years suggest that scores are lower
and more in agreement with the area- averaged ACC over the Pacific-North American region (between 0.2 and
0.5).

Note that, while PNA index hindcast skill tends to be quite satisfactory (Fig. 2a), NAO index skill is lower but
always positive. Figure 2b indicates that the multi-model ensemble can produce a useful signal in years when
the observed NAO index is large in magnitude, such as 1987, 1988 and 1997. These years may in themselves
account for the high correlation coefficient obtained in Table 3. Nevertheless, the model signal in some years
is weak (little shift of the predicted index away from zero) and is effectively contrary to observations in some
other years when the observed index was large in magnitude (1992 and 1995).

Considerable effort has been devoted to the validation of the ensembles as probability forecasts. The dashed
blue and red lines in Figure 2 correspond to the ensemble and ERA40 tercile boundaries. The corresponding
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Figure 2: Time series of the 1-month lead winter (DJF) PNA (a) and NAO (b) index. The multi-model ensemble
spread is depicted by the box-and-whisker representation with the whiskers containing the lower and upper
tercile of the ensemble. The blue dots represent the ensemble mean, the ERA-40 anomalies being displayed
by slightly bigger red bullets. The horizontal lines around the solid zero line mark the tercile boundaries of
the ERA-40 (red) and hindcast data (blue). Note that in the right panel (NAO) the model and ERA-40 tercile
boundaries are coincident.

probabilistic skill measure used is the ranked probabilistic skill score (RPSS) based on these tercile categories.
Hindcast performance is summarized in Table 3. RPSS is defined so that positive values imply higher skill than
climatology forecasts and perfect forecasts have a skill score of 100. The skill of the multi-model ensemble
for the PNA index is close to the skill of the best models and statistically significant at the 95% confidence
level, in good agreement with the correlation results. The situation is slightly different for the NAO index.
RPSS values are high and tend to be statistically significant, which was not the case for the correlation. RPSS
statistical confidence has been assessed by computing the distribution of the skill score from a random set of
hindcasts obtained from scrambling the available hindcasts and verifications.

In order to get a more comprehensive assessment of single-model versus multi-model ensemble skill, a wide
range of results has been collected (Fig. 3) for different cases. The value of the area under the ROC curve is a
probabilistic skill measure ranging from 0 to 1. Values below 0.5 imply lower skill than climatology, whilst a
perfect forecast has a ROC score of 1. The comparison of all ROC scores for 2-metre temperature, calculated
over different regions, start dates, lead times and events shows that, although in some cases the single-models
have a higher ROC score than the multi-model ensemble, in the vast majority of cases (90%) the ROC score
of the multi-model ensemble exceeds the score of the single models. Furthermore, the number of cases with
less skill than climatology is greatly reduced for the multi-model ensemble; for the latter there are no cases
with ROC score smaller than 0.5 compared to 36 cases for the single models. The greater probabilistic skill
of the multi-model ensemble compared to the single-model skill leads to an increased potential economic
value (Richardson, 2000). For instance, it has been found that, for predictions of positive tropical winter (DJF,
November start date) precipitation anomalies, the multi- model ensemble improves the potential economic
value from 15% to 80%, depending on the single model taken as reference (not shown).

In spite of the clear improvement of the multi-model ensemble performance an important question arises.
This improvement could be due to either to the multi-model approach itself or to the increased ensemble size
resulting from collecting all members of the single-model ensembles, or both. In order to separate the multi-
model approach benefits that derive from combining models of different formulation to those derived simply
from the accompanying increase in ensemble size, a 54-member ensemble has been generated for a single start
date (boreal summer hindcasts) using the ECMWF model alone. The ensemble was generated using additional
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Model
Correlation RPSS

PNA NAO PNA NAO

DEMETER multi-model 0.75 0.68 19.3 23.3
CERFACS 0.19 0.48 -1.8 15.3
ECMWF 0.80 0.43 21.8 21.3

INGV 0.57 0.37 -4.6 7.4
LODYC 0.75 0.49 27.3 18.5

Météo-France 0.20 0.44 -26.9 17.1
Met Office 0.62 0.31 0.9 8.8

MPI 0.68 0.23 37.5 7.9

Table 3: Ensemble-mean correlation and ranked probability skill score for the Pacific North American (PNA)
and North Atlantic Oscillation (NAO) indices calculated from the 1-month lead hindcasts started in November
(DJF) seasonal average) for the years 1987-1999. Statistically significant values (95% confidence level) are
printed in bold letters.
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Figure 3: Scatter plot of single-model (ECMWF: blue, Met Office: green, Météo-France: orange, Max-Planck-
Institute: cyan, LODYC: pink, CERFACS: yellow, INGV: grey; different size of bullets for better visibility of all
models) versus multi-model ROC scores of the 2-metre temperature hindcasts from 1987 - 1999. The plot comprises
results from seasonal hindcast scores for 8 different areas (Northern extra-tropics, tropics, southern extra-tropics,
north America, Europe, west Africa, east Africa, south Africa), 4 start dates (Feb, May, Aug, Nov), 2 lead times (1
month, 3 month), and 4 events (anomaly above/below 0.43 standard deviation, anomaly above/below 0).
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Figure 4: Brier skill score (a) and reliability component of Brier score (b) for the 1-month lead tropical summer
(JJA) precipitation 1987 - 1999 for the single ECMWF-control model (blue) and the DEMETER multi-model (red).
The event is ”precipitation anomalies above zero”. Results are shown for different ensemble sizes from 9 to 54
members. Note that lower values of the reliability term mean better reliability.

wind and SST perturbations in order to have a better sampling of the initial condition uncertainty. As skill
measure, the Brier skill score for tropical summer (JJA) precipitation positive anomalies for the multi-model
ensemble (red bars) and the ECMWF model (blue bars) is shown in Figure 4. For each ensemble size, the
corresponding ensemble was constructed by randomly selecting the number of members from the 63 available
in the multi-model ensemble and the 54 in the single-model ensemble. It turns out that the skill grows faster
with ensemble size for ensembles with less than about 30 members, though this threshold changes with region,
variable, and event considered. The skill seems to saturate for bigger ensembles, though a slight increase
is still found. The figure also demonstrates that the multi-model ensemble probabilistic hindcasts are more
skilful than the single-model hindcasts, regardless of the ensemble size. Similar results are found for other
variables and regions. Based on a decomposition of the Brier score (Murphy, 1973), results show that the
largest contribution to the multi-model ensemble skill improvement is due to increased reliability (smaller
values of the reliability term in the Murphy decomposition imply greater reliability of the ensemble), as shown
in Figure 4b. This indicates that the multi-model ensemble provides a better sampling of the phase space so
that the multi-model ensemble contains the verification more often than the single model used in this test.

4 Applications

One of the main objectives of DEMETER is a demonstration of the utility of seasonal climate forecasts through
the coupling of quantitative application models, such as crop yield models, to the global climate prediction
models. Western European agriculture is highly intensive and weather is a principal source of uncertainty for
crop yield assessment and for crop management (Vossen, 1995). As such, seasonal weather forecasts have
high potential value for European agriculture.

The Crop Growth Monitoring System of the European Commission Joint Research Centre (EC-JRC) uses a
crop model called WOFOST (WOrld FOod STudies), and performs crop yield forecasting through a regres-
sion analysis comparing simulated crop indicators and historical yield series for the main crops at national /
European level (van Diepen and van der Wal, 1995). To estimate the yield at the end of the season, the regres-
sion analysis module computes the best predictor equation from 2 sets of parameters: (i) the technological time
trend, (ii) the simulated crops indicators. However, in the current system, at the time when a crop yield forecast
is issued, the weather conditions leading up to harvest time are unknown and are therefore a major source of
uncertainty. The provision of seasonal weather forecast would in principal bring additional information for the
remaining crop season. Also at the local level, the Regional Meteorological Service of the Emilia-Romagna
environmental agency (ARPA-SMR, Italy) also uses WOFOST as part of a geographical soil water flow and
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Figure 5: Distribution (25% quartile) of wheat yield anomaly predictions from the multi-model ensemble down-
scaled data for Spain. The blue dashed line correspond to the reference value (Eurostat), the red dash dotted line to
the operational system at JRC with the prediction issued at the end of February, and the white solid line inside the
central box to the ensemble median.

transport simulation system called CRITERIA (Marletto et al., 2001).

Based on the system described above, an innovative method to supply seasonal forecast information to crop
simulation models has been developed in DEMETER. It consists of running the crop model on each individual
member of the ensemble to derive a probability distribution of crop yield. Based on the spread of the probability
distribution, the end-user can directly quantify the benefits and risks of specific weather-sensitive decisions.

The potential importance of seasonal predictions for crop yield estimation was demonstrated by forcing the
crop model with ERA15 re-analysis used as a ”perfect forecast” and comparing with the current operational
practice in crop yield forecasting at EC-JRC. Results showed (i) that simulated crop indicators had a higher
contribution in the yield estimation, as they were selected as the best predictor (compared to the technological
time trend factor) in a greater number of cases than the current operational system, and (ii) that yield estimates
were closer to the reference crop yield (based on the Eurostat5 value) in nearly twice as many cases.

The multi-model ensemble seasonal hindcasts are performed at global scale but at low spatial resolution for
the crop model requirements. Therefore, even correctly predicted, large-scale weather systems are not yielding
a reliable representation of local weather conditions. This leads to the necessity of downscaling the output
from the prediction system to represent more accurately the weather at the local scale. For example, in terms
of the ”perfect forecast” experiment described above, the downscaled precipitation over the Iberian Peninsula
improved substantially the simulated plant biomass compared to the result obtained using the raw model output.
For example, a 10% reduction in root mean square error and an increase of regression coefficient from 0.63 to
0.71 was observed.

Wheat yield hindcasts were carried out over three years (1987-1989) using DEMETER multi-model ensemble
downscaled data. For 1988 Figure 5 shows that the median of the ensemble (white solid line) precisely coin-
cides with the official Eurostat wheat yield (dashed blue line) and the ensemble dispersion is relatively low,
implying high confidence in the prediction. For 1989, the median of the ensemble is closer to Eurostat official
figure than the hindcast made using the JRC operational method (red dash-dotted line). Only for 1987, the me-
dian of the ensemble was farther than the traditional forecast, although the official Eurostat figure was within
the range of the ensemble forecast. In addition, the positive sign of the yield anomaly was well predicted in all
three cases.

5Eurostat: Statistical Office of the European Union. Eurostat value being the reference for yield comparison (official yield value).
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5 Summary

As part of a European-Union funded DEMETER project, a multi-model ensemble system based on seven
European global coupled ocean-atmosphere models has been described and validated in hindcast mode using
ECMWF ERA-40 reanalysis data. Output from the DEMETER system, suitably downscaled, has been applied
to crop yield and malaria prediction models. Results indicate that the multi-model ensemble is a viable prag-
matic approach to the problem of representing model uncertainty in seasonal-to-interannual prediction, and
will lead to a more reliable forecasting system than that based on any one single model.

In the limited space available in this paper, a few illustrative examples of results from the DEMETER project
have been given. However, we invite readers to visit the DEMETER web site6 where an extensive range of
diagnostics and skill scores used to evaluate the DEMETER system are presented.

In addition to these specific diagnostics and skill scores, visitors to the DEMETER web site can download (in
GRIB or NetCDF format) gridded data from a large data set comprising monthly mean fields for a large number
of variables from the DEMETER hindcasts, including ERA-40 verification. We thus encourage scientists and
potential users of seasonal forecasts to perform their own analysis of the DEMETER data (perhaps to assess
skill for specific regions and variables of interest not covered in our standard analysis). More generally, we
offer this DEMETER data set for education training purposes, both in the developed and developing world.

As a result of the success of DEMETER, real-time multi-model forecasting is now being established as part
of the operational seasonal forecast suite at ECMWF. At the time of writing, plans are well established for the
ECMWF, Met Office and Météo-France coupled systems to be included in this multi-model mix. It is possible
that other models may be included at a later stage.

In future research it is hoped to use a successor system to DEMETER to explore the use of multi-model
ensembles not only for seasonal-to-interannual timescales, but also for decadal timescales for which scientific
evidence of predictability has emerged in recent years. For this puropose it is planned to ensure that the model
components used for seasonal-to-decadal ensemble prediction, are, as far as practicable, identical to those used
for century-timescale anthropogenic climate change. In this way, the reliability of century-timescale climate
change projections can be assessed by running essentially the same ensemble systems on timescales for which
verification data exists. We believe that a unification and rationalization of research and development across
these timescales will enhance enormously the credibility of our science.
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