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1 Introduction

Data assimilation systems attempt to combine and extrapolate observational information in order to generate the
best possible four-dimensional representation of the state of the atmosphere. Extrapolation in space and time
is achieved by blending the observations with model-generated state estimates. The quality of the assimilated
product very much depends on the assumptions that are made about the errors in both observations and model
predictions. For example, a single observation of a meteorological variable such as temperature or surface
pressure typically affects the estimates of those (and other) quantities in a neighborhood of the observation
location. The amplitude and spatial extent of this effect is largely determined by assumptions about the errors
in the background and observations.

To phrase this point more precisely, consider the variational analysis of a set of observations yo, given a model-
generated background estimate xb valid at the same time. The goal is to compute the analysis xa that minimizes

J
�
x ��� �

xb � x � T P � 1 � xb � x ��� �
yo � H

�
x ��� T R � 1 � yo � H

�
x ���
	 (1)

where P and R are the background and observation error covariances, respectively. (Additional notation is
listed in the table in the next section). In the special case when the observation operator H is linear, i.e., when
H

�
x ��� Hx, the minimizing solution is

xa � xb � PHT � HPHT � R 
 � 1 �
yo � Hxb ��� (2)

This expression shows that the change to the background due to the observations is in the column space of
P. The structure of the analysis increment xa � xb is therefore strongly determined by the specification of
the background error covariances. It also clearly (but less directly) depends on properties of R. This is still
true when the observation operator is nonlinear, and/or if it involves integration forward in time as in four-
dimensional variational (4DVAR) assimilation. In that case the influence of any given observation on the
analyzed state is also affected by the model dynamics, but the analysis increment still resides in the column
space of the background error covariance operator.

Current practice is to estimate the covariances based on statistics of residuals between different state estimates
(model forecasts or analyses) and/or between observations (observed-minus-forecast residuals). These esti-
mates tend to be quasi-stationary (varying on a seasonal time scale) and they always involve some kind of
spatial averaging (in the physical and/or spectral domain).

There have been various attempts to develop methods for ’cycling’ the background error covariances in a time-
dependent fashion. Actual model errors must depend on the flow; this can be rigorously demonstrated (Cohn
and Dee 1988) but is also intuitively obvious. We would like to move beyond quasi-stationary covariance
representations in order to account for the dynamic evolution and intermittent growth and decay of the errors.

The Kalman filter has often been championed as providing a basis for solving this problem in our field of
application. This algorithm was originally derived by Kalman (1960) as the optimal state estimator for a linear
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discrete stochastic-dynamic system (prediction model) with additive white Gaussian system noise (model error)
and a linear measurement model (observation operator) with Gaussian measurement noise (observation error).
Kalman showed that the background and analysis error covariances associated with the optimal estimator evolve
according to

Pb
k � MkPa

k � 1MT
k � Qk (3)

Pa
k � Pb

k
� Pb

kHT
k
�
HkPb

kHT
k � Rk

� � 1
HkPb

k (4)

where the subscript k denotes time, M is the linear model operator, and Q is the model error covariance. Other
authors derived extensions and approximations to handle weakly nonlinear dynamics and observation operators,
serially correlated model errors, unknown bias parameters, and other complications.

Notation (subscript k denotes time)

xt
k truth in model state representation IRn

xb
k background state estimate IRn

xa
k analyzed state IRn

yo
k generic observation vector IRp

xo
k in-situ observation vector IRp

Hk generic observation operator IRn � IRp

Hk linear observation operator IRn � IRp

Ik linear interpolation operator IRn � IRp

Mk � k � 1 generic model operator IRn � IRn

Mk � k � 1 tangent-linear model operator IRn � IRn

Ak � k � 1 advection operator IRn � IRn

eb
k
� xb

k
� xt

k background error IRn

ea
k
� xa

k
� xt

k analysis error IRn

eo
k
� yo

k
� Hk

�
xt

k � observation error IRp

em
k
� eb

k
� Ak � k � 1ea

k � 1 model error IRn

Pb
k
��� eb

k

�
eb

k � T � background error covariance IRn � IRn

Pa
k
��� ea

k

�
ea

k � T � analysis error covariance IRn � IRn

Rk
� � eo

k

�
eo

k � T � observation error covariance IRp � IRp

Xk
� � eo

k

�
eb

k � T � observation-background error covariance IRp � IRn

Qk
� � em

k

�
em

k � T � model error covariance IRn � IRn

σb
k
��� diagPb

k 	 1 
 2 background error standard deviation IRn

σa
k
� � diagPa

k 	 1 
 2 analysis error standard deviation IRn

σo
k
� �

diag Rk � 1 
 2 observation error standard deviation IRp

σm
k
� �

diagQk � 1 
 2 model error standard deviation IRn

dxo
k
� xo

k
� Ikxb

k in-situ observation residuals IRp

ρk in-situ observation-background error correlations IRp

Sk variance observation operator IRp � IRp

es
k sampling error for variance observations IRp

Rk variance reduction factor IRn � IRn

20



DEE, D. P.: AN ADAPTIVE SCHEME FOR CYCLING BACKGROUND ERROR VARIANCES

The fundamental obstacle in applying the Kalman filter to complex geophysical systems is that it requires a
great deal of information about the joint probability distribution of model errors and observation errors that
is simply not available. Regrettably, the majority of literature on the application of Kalman filter theory to
atmospheric/oceanic data assimilation continues to point to the computational cost of the algorithm as its main
drawback. This is unfortunate because it tends to draw attention away from the more fundamental issues, which
have to do with information requirements.

In a qualitative sense the Kalman filter reflects three important aspects of error evolution in the assimilation
cycle:

(1) Propagation of initial errors, represented by the first term in (3)

(2) Error growth due to model defects, represented by the second term in (3)

(3) Error reduction due to the incorporation of observational information, represented by (4).

However, the derivation of the Kalman filter covariance evolution equations rests on many assumptions that
are inappropriate for our application (Dee 1991). Rather than starting with (3,4) and attempting to design a
viable computational scheme for these equations, we will formulate separate computational models for each of
the three qualitative aspects of error evolution. We then combine these models in a sequential algorithm for
estimating and updating background error variances in a cycling data assimilation system.

The main restrictions of the algorithm as presented here are that it is univariate, it is primarily designed for
advective quantities, and it estimates error variances only. Correlations must be separately modeled, e.g. by
statistical means, or with ensemble methods. The variance estimation relies on observations, and its perfor-
mance depends primarily on (1) the data coverage and (2) the ability to accurately specify observation errors.

2 Error propagation

The effect on short-term forecast accuracy of uncertainties in the initial conditions can, in principle, be calcu-
lated very precisely (e.g., by ensemble methods, higher-order extensions of the Kalman filter, or by numerical
solution of the Fokker-Planck equation), but this requires access to the probability distribution of the initial
errors. What we actually know about initial errors, however, is mostly qualitative; i.e., they tend to be similar
to background errors in data-sparse regions, and they tend to be smaller and spatially less correlated than back-
ground errors in well-observed regions. The latter depends on the quality of the observations and on the ability
of the analysis system to make good use of them. For example, an analysis system that produces geostrophi-
cally balanced increments may in fact increase errors locally where the flow is highly ageostrophic. While it
may be possible to obtain meaningful statistics for initial errors based on time- and space averaging, these will
tell us very little about the initial errors at a given point in time and space.

It is therefore not clear how much can be gained in practice by using the full model equations to compute the
short-term effect on the background error variances of the initial errors. The most obvious approximation (used
in the extended Kalman filter) is to use the tangent linear model. For the case of atmospheric water vapor it
may be just as effective to ignore model physics altogether and approximate the dynamic propagation of initial
errors by advection only. The additional error incurred by this simplification can then be folded into the model
error term. The same approach could be used for any other scalar quantity which is approximately conserved
by the flow.

In a cycling data assimilation system the initial conditions for the model are obtained from the latest analysis,
possibly after some type of initialization procedure, or a forward model integration in case of 4DVAR. In what
follows we will simply equate initial errors with analysis errors.

Suppose Ak � k � 1 denotes the operator which advects a scalar field from tk � 1 to tk, based on a model reference
trajectory (typically the same trajectory used to produce the background estimate). If eb � a �m are the background,
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analysis, and model errors, respectively, then

eb
k � Ak � k � 1ea

k � 1 � em
k (5)

Note that the model error em
k is defined here simply as the component of background error which is not explained

by the advection of initial error.

It is not difficult to show (e.g. Cohn 1993) that the error variances satisfy the same equation:�
σb

k � 2 � Ak � k � 1
�
σa

k � 1 � 2 � �
σm

k � 2 (6)

The parentheses here indicate an element-by-element vector operation:
�
σ � 2 denotes the vector whose elements

are the squares of the elements of the vector σ.

3 Error growth

Getting a handle on the contribution of model error to the background error variance is key to being able to
predict the background error variances. It may be possible to formulate a flow-dependent model for

�
σm

k � 2, e.g.
based on gradients in the background field, surface properties, or other factors. However, for the moment it is
not known how to do this, and we will therefore strictly rely on observations to estimate the additive effect of
model error on the background error variances.

The intuitive idea behind model error variance estimation based on observations is simply this: if, for some
subset of observations, the discrepancies with the background are larger than expected, then this may be an
indication of large model errors. One obviously has to be very careful with this idea, because it depends on
an adequate notion of ’larger than expected,’ and because large residuals can also be caused by bad observa-
tions. In practice this requires good estimates of observation error variances, and also puts a heavy burden on
observational quality control (see Dee et al. 2001).

Here we develop this idea for in-situ observations yo � xo only, for which the observation operator is simply
spatial interpolation:

H
�
xk ��� Ikxk (7)

In practice this represents a (relatively small) subset of the available observations; for the experiments described
in the next section we used rawinsonde reports and TOVS retrievals for model error variance estimation. For
the in-situ observed-minus-background residuals dxo

k we have

dxo
k
� xo

k
� Ikxb

k� �
Ikxt

k � eo
k � � Ik

�
xt

k � et
k �� eo

k
� Ikeb

k (8)

where eo is the observation error. Clearly

� dxo
k

�
dxo

k � T � � Vk (9)

where
Vk
� Rk � IkPkIT

k
� IkXT

k
� XkIT

k (10)

and P 	 R 	 X are the background, observation, and observation–background error covariances, respectively. The
diagonal of (9) can be approximated by

� � dxo
k � 2 ��� �

σo
k � 2 � Ik

�
σb

k � 2 � 2
�
ρk � � σo

k � � Ikσb
k � (11)

where ρ is the vector of in-situ correlations between observation and interpolated background errors. (Parenthe-
ses surrounding vectors again denote element-by-element operations.) This approximation is accurate if it can
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be assumed that background errors are strongly correlated over the interpolation distances. This will generally
be the case when the spatial resolution of the model is high compared to the correlation length scales.

The variance equation (11) is equivalent to the statement�
dxo

k � 2 � �
σo

k � 2 � Ik
�
σb

k � 2 � 2
�
ρk � � σo

k � � Ikσb
k ��� es

k (12)

where es
k represents the diagonal approximation error incurred in replacing (9), compounded with (and dom-

inated by) sampling error. If the observation error variances
�
σo

k � 2 and the cross-correlations ρk are known,
then (12) represents an observation model for the vector of background error variances

�
σb

k � 2. The variance
observations consist of the squared residuals:�

dxo
k � 2 � Sk

���
σb

k � 2 ��� es
k (13)

and the variance observation operator S is defined by

Sk
���

σb
k � 2 � � �

σo
k � 2 � Ik

�
σb

k � 2 � 2
�
ρk � � σo

k � � Ikσb
k � (14)

We will refer to es as the sampling error for the variance observations. Under the assumption that the in-situ
residuals dxo

k are zero-mean and approximately Gaussian with covariances given by (10), it can be shown that�
es

k � � 0 (15)� es
k
�
es

k � T � � 2
�
Vk � 2 (16)

where
�
Vk � 2 is the matrix obtained by squaring each element of Vk. Note that Vk depends on the background

error covariances, which are unknown.

A prediction
�
σb

k � 2pred of the background error variance can be obtained by integrating the variance evolution
equation (6). The squared observation residuals can then be used to adjust this prediction by means of a linear
estimation scheme of the form �

σb
k � 2est � �

σb
k � 2pred � Lk

� �
dxo

k � 2 � Sk
���

σb
k � 2pred � � (17)

Such a scheme is inherently suboptimal, because the linear gain Lk for an optimal scheme would have to depend
on the error covariance (16), which, in turn, depends on the unknown background error variances. The optimal
gain would also require specification of the error covariances associated with the variance prediction, which, of
course, are also unknown. However, even if suboptimal, this scheme simply averages the variance predictions
with the variances as implied by the observations. This will improve the predictions as long as the variance
observation operator Sk is reasonably accurate.

We can construct a gain matrix Lk based on rough estimates of the required error covariances. For the variance
prediction errors we assume � ���

σb
k � 2pred

� �
σb

k � 2 � ��� σb
k � 2pred

� �
σb

k � 2 � T � � DkCkDk (18)

where

Dk � αdiag
�
σb

k � 2pred (19)

Ck � C
�
lh 	 lv � (20)

with α a positive scalar and C
�
lh 	 lv � a fixed isotropic correlation matrix with horizontal and vertical length

scales lh and lv, respectively. In place of (16) we use
� es

k

�
es

k � T � � 2diag
���

σo
k � 2 � Ik

�
σb

k � 2pred � 2 (21)

Based on these estimates we take

Lk � Lk
�
α 	 lh 	 lv �

� DkCDkIT
k
�
IkDkCDkIT

k � 2diag
���

σo
k � 2 � Ik

�
σb

k � 2pred � 2 � � 1
(22)

The scalars α, lh, and lv are calibration parameters that control the temporal and spatial smoothing associated
with the scheme (17).
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4 Error reduction

From a mathematical point of view it is not difficult, for any given analysis method, to derive analysis error
covariances from the error covariances of the background and of the observations. The required computations
are expensive, especially for global analysis systems. Fischer and Courtier (1995) show how covariance esti-
mates of the large-scale components of the analysis errors could be obtained in the context of a variational data
assimilation system. Daley and Barker (2001) have formulated an efficient observation-space based scheme
for computing analysis error covariances that can produce small-scale features in the variance estimates. Their
scheme takes advantage of the preconditioning steps in the iterative conjugent-gradient solver in their analysis
system. There are some unresolved questions about the accuracy of their estimates near the boundaries of the
observation prisms which they use to localize the computations.

For the purpose of cycling the background error variances we are primarily interested in obtaining a reasonable
estimate of the reduction factor R in �

σa � 2 � R
�
σb � 2 (23)

where we omit the time index for the moment. Our approach will be to process the observations sequentially,
and produce iterative variance estimates as follows:�

σa�
0 � � 2 � �

σb � 2 (24)�
σa�

i � � 2 � Ri
�
σa�

i � � 2 	 i � 1 	 ����� 	 p (25)�
σa � 2 � �

σa�
p � � 2 (26)

where Ri is the reduction factor associated with observation i. If each of the Ri are accurately computed, then
this algorithm is close to optimal in case of uncorrelated observation errors.

Consider the case of a single in-situ observation xo located at grid location i. We first assume that the error
standard deviation for this observation is σo

i , and that the observation error is not correlated with the background
error. Then we can show that the analysis error variance at location j is�

σa
j � 2 � � 1 � c2

i j κi 
 � σb
j � 2 (27)

where ci j is the correlation between background errors at locations i and j, and

κi �
�
σb

i � 2�
σb

i � 2 � �
σo

i � 2 (28)

Note that subscripts now indicate spatial locations. We see that the variance reduction is concentrated near the
observation location. For example, in case of locally isotropic background error correlations with decorrelation
length scale l we would have

c2
i j � 1 ��� ri j

l � 2 � O � ri j

l � 4
(29)

where ri j denotes the distance between locations i and j. This shows that the effect of the observation on
the analysis error variance diminishes with the square of the distance from the observation location. It also
demonstrates that the background error correlations must be known to be able to estimate this effect.

This simplest possible case illustrates clearly that the analysis error variances are very sensitive to details of the
observation and background error covariances. No computational approach, no matter how sophisticated, can
change this fact.

We can generalize the model (27) for the local variance reduction due to a single observation in various ways.
For example, if the error in the observation is correlated with the error in the background, then that observation
contains less independent information. The analysis error variance will therefore be larger, i.e., less reduced.
Instead of (27) we can then take �

σa
j � 2 � � 1 � �

1 � ρi � 2c2
i j κi 
 � σb

j � 2 (30)
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with ρi the observation-background error correlation. The variance reduction factor is then

Ri � � 1 � �
1 � ρi � 2c2

i j κi 
 (31)

Similarly we can formulate semi-empirical models for the local variance reduction due to any single observation
associated with a particular instrument. With some additional effort one can model the variance reduction in
physical space due to a single satellite sounding. It is not difficult, for example, to model the error reduction
of the moisture field due to the analysis of a single observation of total precipitable water in a vertical column.
Such a model must depend on the analysis method used, and will have to involve assumptions about the vertical
structure of the background errors.

5 Sequential estimation

The following sequential algorithm puts together the three main elements of variance estimation that have been
discussed in the previous sections:

�
σm

k � 2pred � �
σm

k � 1 � 2est model error prediction�
σb

k � 2pred � Ak � k � 1
�
σa

k � 1 � 2est � �
σm

k � 2pred variance evolution�
σm

k � 2est � �
σm

k � 2pred � Lk
� �

dxo
k � 2 � Sk

���
σb

k � 2pred � � adaptive adjustment�
σb

k � 2est � �
σb

k � 2pred � � � σm
k � 2est

� �
σm

k � 2pred
� variance update�

σa
k � 2est � Rk

�
σb

k � 2est variance reduction

The algorithm must be initialized with a priori estimates
�
σa

0 � 2 and
�
σm

0 � 2 for the analysis and model error
variances at time t � t0.

This particular formulation of the algorithm uses the model error variance estimated at time t � tk � 1 as a first
guess for the model error variance at time t � tk. This presumes that there is some degree of local persistence to
the model error variances. One can set

�
σm

k � 2pred � 0 instead, which means that model error variances are con-
tinuously re-estimated from current observations. If a more useful statistical and/or flow-dependent prediction
model for model error variances is available, it can be inserted in the first step of the algorithm.

The adaptive adjustment step is absolutely crucial to the algorithm. First of all, it is needed to remove the de-
pendence of the variance estimates on the initial conditions

�
σa

0 � 2 	 � σm
0 � 2. At least in well-observed regions this

dependence should quickly diminish with time. Secondly, the use of observations is supposed to compensate
for the approximation errors incurred in each steps of the algorithm. As we have tried to argue, such approxi-
mations are inevitable because of lack of detailed information about model and observation errors. Ultimately
we have only the observations to rely on for attempting to extract such information.

6 Experiments with moisture assimilation

We have implemented the methods described in this article for the moisture analysis component of the Physical-
space/Finite-volume Data Assimilation System (fvDAS). This system was recently developed at the Data As-
similation Office at NASA1’s Goddard Space Flight Center and is scheduled to become operational in August
2002. It is based on a finite-volume general circulation model (fvGCM) (Lin and Rood 1996, 1998), a statistical
quality control system (Dee et al. 2001), and uses the Physical-Space Statistical Analysis System (PSAS) to
combine six-hour forecasts with observations (Cohn et al. 1998). A comprehensive description and evaluation
of the fvDAS system will be published elsewhere.

1National Aeronautics & Space Administration
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Figure 1: Estimated background error standard deviations (cyan contours) and model error standard devia-
tions (red contours), superimposed on the specific humidity background estimates (shaded) for model layer
4, valid at 1 July 1998 (0 UTC). The region shown includes the East Coast of the United States, Central
America, and the Caribbean. Darker shades correspond to higher values of specific humidity. All units are
in g/kg. Blue dots indicate rawinsonde station locations; green dots mark the locations of TOVS retrievals.

The moisture analysis is based on the pseudo-relative humidity variable (Dee and da Silva 2002). In-situ mois-
ture observations consist of radiosonde station data and interactive TOVS2 retrievals (Joiner and Rokke 2000).
We prescribe observation error standard deviations (in pseudo-relative humidity) that are a function of pressure
only. Translated in terms of specific humidity, this corresponds to the assumption that the observation errors
are a simple function of the saturation mixing ratio according to the model, i.e., they are a function of the
background temperature field. See Dee and da Silva (2002) for details.

We also analyze estimates of total precipitable water (TPW) derived from SSM/I3 data (Wentz 1997) in a two-
step procedure which is essentially equivalent to a separability assumption on the background errors. We first
generate a two-dimensional TPW increment to the background based on the data. This is done globally with
PSAS and involves some horizontal smoothing based on the presumed moisture background error correlations.
We then compute a three-dimensional correction to the background moisture field which is consistent with the
TPW increment. The vertical structure of the correction is based on assumptions about the vertical correlations
of the moisture background errors. Based on this analysis procedure we can derive a model for the analysis
error reduction factor Ri due to a single TPW observation; details of this model will be described elsewhere.

2Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder
3Special Sensor Microwave/Imager

26



DEE, D. P.: AN ADAPTIVE SCHEME FOR CYCLING BACKGROUND ERROR VARIANCES

0.5

0.5

0.5

0.5

0.5

0.5

0.50.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

2

2

2

0.5

0.5

0.6 0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6 0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.60.6

0.6

0.7
0.7

0.7

0.7

0.7

0.7 0.7

0.7

0.7

0.7

0.7
0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.8

0.8

0.8
0.8 0.8

0.8
0.8

0.8

0.8

0.8
0.8

0.9

0.9

0.9
0.9

0.9
0.9

0.9

0.9

0.9

0.9

0.9

1

1

1
1

1

Figure 2: Estimated analysis error standard deviations (cyan contours) and the variance reduction factor
(red contours), superimposed on the specific humidity analysis (shaded, using the same scale as in Fig. 1), for
model layer 4, valid at 1 July 1998 (0 UTC). Locations of all observations used for the analysis are indicated,
with blue dots for rawinsondes; green dots for TOVS retrievals, and yellow dots for TPW observations.

We used a low-resolution (2 � 2 � 5 degrees, 55 layers) version of the system for our initial experiments. Prop-
agation of the analysis error variance field, as in (6), is computed with the tracer transport facility built into
the fvGCM. We estimate the effect of model errors on the background error variances based on rawinsonde
observations and interactive TOVS retrievals, using PSAS to solve the update equation (17). Analysis error
computations involve the complete observing system, including TPW.

The computational overhead for the entire scheme amounts to less than 10% of the cost of the moisture analysis.
We have not made a serious attempt to optimize software performance. We do not expect the relative cost to
increase at higher model resolutions, since the fvGCM tracer transport computation is highly efficient. If
necessary, the model error estimation step can be made cheaper by using a localized analysis scheme to solve
(17), rather than a global solver such as PSAS. This is justifiable because the statistical estimation is far from
optimal in any case. The cost of the analysis error estimation is proportional to the number of observations, and
the computations are all local and therefore easily parallelized.

In Fig. 1 we show a snapshot of the estimated background error standard deviations (cyan contours) for specific
humidity, superimposed on the background specific humidity field itself (gray shading). These estimates are
valid at 0 UTC, 1 July 1998, for model layer 4, which is located on average at about 120 hPa above terrain. The
maximum value of specific humidity in the area shown, corresponding to the darkest shade of gray, is almost
15 g/kg. The maximum estimated error standard deviation is about 3.5 g/kg. Also marked are the locations of
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Figure 3: Regional rms of specific humidity error standard deviations for Europe, for several model layers, July 1998

the rawinsonde stations (blue dots) and of the TOVS retrievals (green dots) that were used to estimate the model
error variance at that particular time. The red contours indicate the model error standard deviation estimated
from those observations.

The analysis for the same time and location is shown in Figure 2, together with the locations of all observations
used for the analysis (blue dots: rawinsondes; green dots: TOVS retrievals; yellow dots: TPW observations).
Also shown are the estimated analysis error standard deviations (cyan contours) and the variance reduction
factor (red contours).

Figure 3 shows the time evolution (for July 1998) of regionally averaged (rms) estimates of error standard
deviations of specific humidity at various model levels in Europe. The curves show the 6-hourly cycle of
error growth due to model error and error reduction due to the observational information. At the top level
shown (at approximately 70 hPa) there are no observations, so that the only visible signal there is due to
the advection of information. The estimated values of the error standard deviations at that level are rather
sensitive to the initial specifications. At lower levels the available observations are used to anchor the estimates,
based on observed-minus-background residuals. There the estimated values are sensitive to the prescribed
observation error standard deviations. At the lowest level shown, the influence of the observations is felt only
by extrapolation based on the assumed vertical background error correlations.

Figure 4 shows the zonal rms of the estimated background error standard deviations (contours) superimposed
on the zonal mean of the background specific humidity field (shaded), at 1 July 1998 (0 UTC). This picture
is fairly typical for that month, although the changes in time of the estimates are clearly visible in the zonal
means. The largest errors occur in the lowest layers in tropics. The size of the errors is not simply proportional
to the magnitude of the field, although there is a clear correlation. A relative maximum appears just below the
tropical tropopause, which could be related to active convection and relatively large model errors there. The
size of the errors relative to the field values at those altitudes suggest that the background estimates are probably
not meaningful there. The estimated errors in the southern hemisphere appear to be too optimistic, possibly due
to overestimation of the error reduction due to TPW observations.

Figure 5 shows, for the same time, the difference between the zonal rms of the estimated background error
standard deviations and the zonal rms of the propagated analysis error standard deviations. To the extent that
the latter were estimated accurately, this difference can be attributed to model errors. As it is, we see small
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Figure 4: Zonal mean specific humidity background (shaded) and error standard deviations (contours), at 1
July 1998 (0 UTC)

negative adjustments of the estimates at higher altitudes in the tropics, which indicates that effect of propagated
initial errors on the background errors was overestimated. The model errors appear to be largest in the tropics,
especially in the lowest model layers. The accuracy of these estimates depends primarily on (1) the data
coverage, and (2) the validity of the assumptions on observation errors that enter in to the estimation procedure.

7 Conclusion

We have presented a sequential algorithm for the estimation and adaptive updating of univariate background er-
ror variances, which accounts for the effects of (1) propagation of initial errors, (2) error growth due to model er-
rors, and (3) error reduction due to the use of observations. Essential assumptions and/or restrictions for each of
these aspects are that (1) can be modeled by advection, (2) can be estimated from observed-minus-background
residuals, and (3) can be estimated from knowledge of the observing system and its error characteristics.

We have implemented the algorithm in a global atmospheric data assimilation system and applied it to the on-
line estimation of specific-humidity background error standard deviations. We obtained estimates with realistic
features at a reasonable cost. The algorithm is stable, in the sense that different initial specifications of the error
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Figure 5: Estimated error growth due to model error: Zonal mean difference between the adjusted estimate of
background error standard deviations and the predicted background error standard deviations based on advec-
tion of initial errors only, at 1 July 1998 (0 UTC)

variances quickly converge to the same estimates in regions where observations are available. This stability is
due to the adaptive feature of the algorithm, which ensures that the estimates are consistent with observational
residuals.

It is possible to use this method for cycling the background error variances for the mass variable (virtual
potential temperature) as well. Wind error variances can then be estimated by (1) deriving the variance of the
balanced component of wind error from the mass error covariance estimates, and (2) estimating the variance of
the remaining decoupled component of wind error adaptively from wind observations.

We do not know whether the use of these variance estimates in an operational data assimilation system will
lead to measurably better analyses and/or forecasts. The accuracy of the variance estimates produced by our
algorithm depends on many uncertain parameters, most notably the parameters that describe the information
content of the observations. This brings us back to the heart of the problem in data assimilation: there is no way
to do it reliably in the absence of models and observations whose error characteristics are very well understood.
The fundamental limitations are informational, rather than computational.
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