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1 Introduction

This paper concerns the ubiquitousbias problemin data assimilation, which is caused by the presence of sys-
tematic (as opposed to random) errors in both models and observations. Systematic model errors can arise,
for example, from inaccurate land-surface forcing, poor resolution of the boundary layer, simplified represen-
tations of moist physics and clouds, and various other model imperfections. Observation biases for different
types of instruments are often caused by specific aspects of the measurement process, or—in the context of
data assimilation—by approximations in the observation operators that are used to represent the relationship
between the observables and the model variables. It takes a great deal of work to screen the observations and
correct them for known biases in order to extract the information that is actually useful to assimilate (e.g. Mc-
Nally et al. 2000). However, we will assume in what follows that all this has been done, and that any remaining
bias in the observations may be neglected by the analysis scheme.

Data assimilation in the presence of model bias can generate spurious signals and trends in the assimilated fields,
and this problem is exacerbated by changes in the observing system. Figure (1) shows a simple illustration of
an assimilation of unbiased observations with a biased model. The visible tendency for the model to drift from
the true state produces a positive mean error in the assimilation, whose size depends on the accuracy as well as
the frequency of the observations. As a result, a change in the characteristics of the observing system causes an
apparent change in climate.

Figure 1: Assimilation of unbiased observations in a biased model, and the effect of a change in observing
frequency on the apparent climate. Observations and their error bars are indicated in red; the assimilation
trajectory and its error bars in blue. The black curve represents the truth.

In this paper we consider methods for detecting, estimating, and correcting model bias during data assimilation.
The techniques are strictly statistical and do not resolve the underlying cause of model bias. Naturally it is
always preferable to remove the cause once it has been identified, but that is not an easy task. Hopefully the
statistical estimation of model bias (or other systematic model errors) will be beneficial to model developers.
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2 Systematic errors and data assimilation

All analysis methods are of the form
xa−x f = k[y−h(x f )] (1)

wherexa, f are the analysis and background estimates, respectively, of the true statex, h(·) is the observation
operator, the vectory contains the current observations, and the operatork(·) represents the analysis algorithm.
We use the superscriptf rather thanb for the background state to avoid confusion later on—it may be helpful
to think of forecastor first guessto associatex f with the background state. The input to the analysis consists
of the observed-minus-background residualsy−h(x f ), also known as the innovations, data departures, etc.

Note that bothh andk may be nonlinear, but we can define their linearized versions:

H =
¶h
¶x

∣∣∣∣
x=x f

, K =
¶k
¶x

∣∣∣∣
x=x f

(2)

HereK is the familiargain matrixfrom linear estimation theory. We also define the analysis/background/obser-
vation errors by

ea = xa−x, ef = x f −x, eo = y−h(x) (3)

We then obtain the following three diagnostic relations:〈
y−h(x f )

〉
≈ 〈eo〉−

〈
Hef 〉 (4)〈

xa−x f 〉 ≈ 〈Keo〉−
〈
KHe f 〉 (5)

〈ea〉 ≈ 〈Keo〉+
〈
[I −KH ]ef 〉 (6)

where〈·〉 may represent any linear averaging method, although when referring tobias we usually mean an
Eulerian time average. However it is useful to keep in mind that much of what follows can be interpreted
different ways depending on the averaging method, i.e., on the choice of ensemble.

The first of these relations, (4), simply shows that the mean observed-minus-background residuals depend on
the mean errors in observations and background. Obviously, if a certain observing instrument is biased, then
this will be reflected by the residual statistics. Alternatively, non-zero mean departures may indicate biases in
the first guess, possibly caused by systematic errors in the assimilating model. In the absence of a true reference,
there is no general method for separating observation biases from model-generated biases without introducing
independent hypotheses about the model and the data. In some cases it is reasonable to suppose that biases in
the departures are caused by the model; e.g., when departures for different and independent observing systems
show similar large-scale biases that can be explained by known deficiencies in the model.

Figure 2: November 1998 – June 2000 monthly mean observed-minus-background residuals for AMSU-A
channel 14, northern hemisphere (red) and southern hemisphere (black). Figure provided by Tony McNally,
ECMWF.
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To illustrate, Fig. (2) shows two timeseries of monthly mean observed-minus-background residuals for Ad-
vanced Microwave Sounding Unit (AMSU-A) channel 14 brightness temperatures, averaged over northern
hemisphere (20N–70N) and southern hemisphere (20S–70S) locations. Both curves clearly show an annual
cycle with a change in the mean of about 5–7 K. This particular channel is most sensitive to temperatures at
around 1 hPa. In this case the culprit is almost certainly the model, since it is known to exhibit large, season-
ally dependent temperature biases in the stratosphere, and some independent observational evidence from other
instruments confirms that this AMSU channel is accurate (McNally,pers. comm.).

The second diagnostic equation, (5), states that model and/or observation biases also show up in the mean
corrections to the background that are produced by the analysis, i.e., in the analysis increments. In the absence
of biases the mean analysis increments should be negligible compared to the typical magnitude of any single
increment (e.g., as measured by the root-mean-square). Due to the presence ofK on the right-hand side of
(5), it is not a simple matter to infer the magnitude of model and/or observation biases from the magnitude of
the mean analysis increments. In a multivariate analysis system, for example, model temperature biases can
cause non-zero mean wind analysis increments even in the absence of wind observations. Mean departures are
therefore more informative than mean analysis increments for identifying and estimating biases.

Figure (3) shows monthly mean temperature analysis increments during a three-year period from an assimila-
tion made at the ECMWF in preparation for the ERA-40 reanalysis production. During this period the major
source of observational information at levels higher than 10 hPa consisted of radiance data from the strato-
spheric sounding unit (SSU) on board the NOAA-14 satellite. In this preliminary experiment, the SSU data
were not used during a three-month period in the beginning of 1995. The corresponding jump of about 0.5 K
in the mean temperature increments is clearly evident; this jump is strictly artificial and caused by the presence
of a persistent warm bias in the model at levels around 2–5 hPa. The increments at 1 hPa and higher are clearly
related to this as well, and are probably due to the vertical structure functions used in the analysis.
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Figure 3: Globally averaged monthly mean temperature analysis increments during 1994–1996, obtained
from a preliminary ERA-40 run. No SSU data were used during a three-month period in the beginning of
1995. Figure obtained from Per K̊allberg, ECMWF.

Finally, (6) states that the presence of bias in the first guess and/or the observations generally results in biased
analyses. This is true for any linear analysis scheme of the form (1); there is no reason to believe that nonlinear
implementations of (1) change this fact unless they have been specifically designed to do so. Therefore the
analysis method must be modified to account for bias explicitly in order to produce an unbiased assimilation.
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3 Correcting persistent errors in the first guess

In some cases (e.g. upper stratospheric temperature, tropical tropospheric humidity) short-term model forecasts
contain relatively large, persistent components of error. Instead of zero-mean background errors it is then more
appropriate to assume

ef = b+ ẽf with
〈
ẽf 〉 = 0 (7)

where the constant (but otherwise unknown) vectorb represents the effect of model bias. It is not difficult
to estimate this component from the available observations. This is accomplished by the following simple
modification of the standard linear analysis equations:

b̂k = b̂k−1−L k

[
yk−Hk(x

f
k
− b̂k−1)

]
(8)

xa
k = (x f

k
− b̂k)+K k

[
yk−Hk(x

f
k
− b̂k)

]
(9)

where the subscriptk denotes time. The first equation updates a prior bias estimateb̂k−1 based on the latest
observationsyk, while the second produces an analysis based on the bias-corrected background(x f

k
− b̂k). Note

that omission of̂b (i.e. settingb̂ = 0) gives the standardbias-blindanalysis equations. It is also worth pointing
out that the bias correction (9) is optional; i.e., the bias estimation in (8) can be performed independently as a
diagnostic, computed either during the data assimilation or in post-processing.

Figure 4: Adaptive model bias correction applied during the assimilation of Fig. (1).

As a trivial illustration we show in Fig. (4) the earlier example of Fig. (1), but now including bias correction
on the background. The algorithm learns, after the first few analyses, that the model forecast consistently
over-estimates the observation by a fixed amount. It then uses this information to adjust subsequent model
predictions. As a result, the mean errors rapidly approach zero and become independent of the observing
frequency. The bias correction is adaptive: if the bias were to change, then the algorithm would slowly adjust
the estimates based on current observations. Thus, the analysis attempts to make better use of the observations
by incorporating the recent history of observed-minus-forecast residuals.

This modified analysis algorithm was developed by Dee and da Silva (1998), who also explained its connec-
tion with the more generalseparate bias estimatordeveloped by Friedland (1969), which is based on state
augmentation in a Kalman filter framework. Dee and Todling (2000) showed that the algorithm is optimal
when

K k = Pf
k
HT

k

[
HkP

f
k
HT

k +Rk

]−1
(10)

L k = Pb
kHT

k

[
HkP

b
kHT

k +HkP
f
k
HT

k +Rk

]−1
(11)

where

Pf
k

=
〈
ẽf

k
(ẽf

k
)T〉

(12)

Pb
k =

〈
eb

k(e
b
k)

T
〉

, eb
k = b̂k−1−b (13)
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Note thatb̂k−1 in this scheme represents a prior estimate of the bias at timetk, andeb
k is defined as the error in this

estimate. The required covariances are not known; however, a carefully developed model for the background
error covariancePf is always available in a skillful data assimilation system. In modeling the error covariances
Pb associated with the bias estimatesb̂ one can take advantage of this, and use, for example,

Pb
k = gPf

k
(14)

with g a calibration parameter. As discussed by Dee and Todling (2000), this parameter controls the variation
in time of the bias estimateŝb. A small value ofg implies that the estimates are updated slowly, and they
will accordingly converge to the long-term time-averaged background error. Large values ofg would result in
very noisy bias estimates. An appropriate value can be estimated from observed-minus-background residuals
by imposing a constraint on the response function associated with the estimator (8), e.g., one can require that
the time sequence of bias-corrected residuals be as close to white as possible. See Dee and Todling (2000) for
further details.

Dee and Todling (2000) implemented (8–9) for the moisture component of a global atmospheric data assimi-
lation system, with good success. They used (14) with a value forg such that the bias estimates varied on a
time scale of about 7-10 days. The moisture analysis bias with respect to radiosonde observations was almost
completely eliminated. In addition, the bias in the 6-hour forecast was reduced by a factor of two, indicating
that the bias correction procedure actually improved the moisture analyses.

4 A simplified version of the algorithm

The extra cost of the bias update in (8) is considerable, since it requires the computation of an additional
analysis. The cost may be reduced by using only a subset of the observations for estimating the bias—as was
done by Dee and Todling (2000)—or by expressing the bias in terms of a relatively small number of parameters,
as we will discuss in the next section. Alternatively, with some approximations the algorithm can be simplified
considerably to remove almost all the extra cost of the bias estimation, as follows.

If the model (14) is used withg small (i.e., slowly varying bias estimates), then the bias updates will be small as
well. It may then be acceptable to replaceb̂k in (9) by b̂k−1. In that case the terms in brackets on the right-hand
sides of (8) and (9) are identical. Furthermore, using (14) in (10, 11) implies

L k = gPf HT
k

[
(1+ g)HkP

f HT
k +Rk

]−1
(15)

≈ gK k (16)

wheng � 1. This approximation seems reasonable in view of the many uncertainties that enter into the speci-
fication ofK in any realistic setting. We can then reverse the order of (8–9) and obtain the following:

xa
k = (x f

k
− b̂k−1)+K k

[
yk−Hk(x

f
k
− b̂k−1)

]
(17)

b̂k = b̂k−1− gK k

[
yk−Hk(x

f
k
− b̂k−1)

]
(18)

The bias update equation (18) is now trivial to compute, as it can make use of a previous calculation made
in (17). This simplification of the algorithm was first suggested by A. da Silva, and is briefly described in
Radakovichet. al (2001).

Equation (18) shows that the bias estimates are computed in this algorithm as a recursive time average of the
analysis increments. It is important to note that this works only because the analysis in (17) is computed
using bias-corrected background estimates. Therefore the two components of this form of the algorithm are
interdependent, unlike the original (8–9). In fact, it is clear from (5) discussed earlier that the mean analysis
increments in a bias-blind analysis scheme (i.e., a scheme that does not explicitly correct the background bias)
arenotequal to the background bias; see Dee and da Silva 1998, section 2(c), for further discussion.
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Any existing data assimilation system can be easily modified to incorporate this algorithm. This becomes clear
if we write (17–18) as follows:

x̃ = x f
k
− b̂k−1 (19)

dy = yk−hk(x̃)
dx = kk(dy)
xa

k = x̃+dx

(20)

b̂k = b̂k−1− gdx (21)

The central section, (20), represents the original bias-blind analysis scheme. The modifications needed to
handle bias estimation and correction are external and can be implemented at a high level in the code—perhaps
even at script level.

The simplified algorithm assumes the covariance model (14). This implies that the bias updates (i.e., the updates
to the bias estimates) are restricted to the same subspace as are the analysis increments. If this subspace is
stationary (which is not exactly true, in practice) then the bias estimates will be in this subspace as well, and
therefore the spatial and multivariate structure of the analysis corrections with and without bias correction will
be similar. This may be advantageous, especially if the covariances for the original bias-blind analysis system
have been carefully constructed to generate balanced analysis increments. However, if it is knowna priori that
the structure of the persistent errors in the system is different than that of the random errors, then this algorithm
is not appropriate.

Different refinements and extensions to the algorithm are possible. In particular, instead of applying the bias
correction directly to the background as in (19), one can attempt to use the latest bias estimate to adjust the
model forcing during the integration, in order to guide it to an unbiased state. This would render the step (19)
unnecessary. The simplest way to accomplish this is with a linear incremental updating scheme (as formulated
by Bloomet al. 1996), in which a fraction of the bias estimateb̂ is removed from the model output after each
model time step. Specifically, the biased model integration fromtk−1 to tk in N time steps

x f
k

= mk,k−1(x
a
k−1) (22)

= m
k,k− 1

N
(m

k− 1
N ,k− 2

N
( · · · (m

k−N−1
N ,k−1

(xa
k−1)) · · · )) (23)

is replaced with

x̃ f
k

= m̃k,k−1(x
a
k−1) (24)

= m
k,k− 1

N
(m

k− 1
N ,k− 2

N
( · · · (m

k−N−1
N ,k−1

(xa
k−1)−

1
N

b̂k−1) · · · )− 1
N

b̂k−1)−
1
N

b̂k−1 (25)

This incremental bias correctionreplaces (19). See Radakovichet al. (2001) for an application of such a
scheme in a land-data assimilation study. This is a first step toward using the bias estimates to modify the
model itself, rather than applying a correction to the model-generated background. In a complex multivariate
system a more sophisticated approach may be needed, such as proposed by Bellet al. (2001) in the context
of an ocean model. They combined a statistical bias estimation scheme similar to ours with hypotheses about
the physical mechanisms that caused the bias, and then adjusted specific model terms to suppress the bias
generation.

5 Parameterized deterministic error models

The termbiasusually means an error which is constant in time. More generally we might consider any deter-
ministic component of error that can be described in terms of a set of parametersb that are constant (or slowly
varying) in time. For example, it is not unusual for temperature errors in a short-term forecast near the surface
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to depend systematically on the local time of day, due to the model’s difficulty in representing the diurnal cycle.
In that case it would be appropriate to assume a specific temporal dependence of the background errors. For
other, more practical reasons, it may be desirable to reduce the number of degrees of freedom in a constant bias
term by presuming, for example, a fixed spatial structure, or by expressing it in terms of a limited number of
empirical orthogonal functions or in some other appropriate basis.

In any case, let us now assume the following model for the background errors:

ef = b(b )+ ẽf with
〈
ẽf 〉 = 0 (26)

whereb is a known function of a vectorb of unknown parameters. This approach becomes especially interest-
ing when the number of bias parameters is much smaller than the dimension ofb. In general,b may depend on
location and/or time, or even on the statex.

The usual technique for deriving an estimation algorithm is to relate the unknowns to the available data. Omit-
ting time subscripts for the moment, we have

y−h(x f ) ≈ eo−Hef (27)

= eo−Hb(b )−Hẽf (28)

If we define
g(b ) = Hb(b ) and ẽ= eo−Hẽf (29)

then

dy = g(b )+ ẽ with

{
〈ẽ〉 ≈ 0〈
ẽẽT

〉
≈ HP f H +R

(30)

This defines ameasurement modelfor b , which describes the information about the parametersb that is implicit
in the observations.

There are many ways to derive estimation algorithms forb based on (30). For example, the bias parameters
can be added to the control vector in a variational analysis scheme and estimated simultaneously with the
state of the system, as is sometimes done for parameters that describe observation bias (Derber and Wu 1998).
Similarly, they can be added to the state vector in a Kalman filter (Friedland 1969). If the number of parameters
is sufficiently small, then they can simply be estimated from the data by nonlinear least squares, i.e., by solving

b̂ k = argmin
b

||dyk−gk(b )||2 (31)

prior to the analysis at timetk. The optimal estimate ofb , given the observations attk, would require replacing
theL2 norm in (31) by a covariance-weighted norm using the covariances specified in (30), but this is expensive
and would probably not change the result very much.

During data assimilation, the parameter estimates may be used to correct the deterministic component of back-
ground errorb(b ). For example, ifb = b(x;b ) thenb can be evaluated at any given time and location by using
the latest estimates forx andb . In the special case whenb is linear inb , i.e.,

b(b ) = Bkb (32)

with Bk a matrix with known (possibly state-dependent) coefficients, then the analogue of (8–9) is

b̂ k = b̂ k−1−Lb
k

[
yk−Hk(x

f
k
−Bkb̂ k−1)

]
(33)

xa
k = (x f

k
−Bkb̂ k)+K k

[
yk−Hk(x

f
k
−Bkb̂ k)

]
(34)

This estimator is optimal whenK k is as given by (10) and

Lb
k

= Pb
k−1

BT
k HT

k

[
HkBkP

b
k−1

BT
k HT

k +HkP
f
k
HT

k +Rk

]−1
(35)
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where
Pb

k
=

〈
eb

k
(eb

k
)T

〉
, eb

k
= b̂ k−1−b (36)

The gain matrixLb
k

for the bias update is low-rank: it has one row for each bias parameter and as many columns

as there are observations. SinceB is known, only the parameter estimation covariances inPb (in addition toP
andR) need to be specified in order to implement this algorithm. If the number of parameters is much smaller
than the number of available observations then the specification ofPb becomes less important.

Chepurinet al. (2003) have used a version of this algorithm for bias correction in a tropical ocean model.
They expressed the bias in the ten-day forecast as a linear combination of a constant field, an annual cycle
component, and two empirical orthogonal basis functions. They were then able to estimate the coefficients of
these components and correct the forecast bias during the data assimilation.

6 Some pitfalls

The Achilles’ heel of this approach is that it requires unbiased observations—or, rather, that any remaining
observation bias must be small compared to the bias in the model. As we pointed out, in practice it takes a
great deal of work to justify this position. Prior to analysis, observations are thoroughly screened and bias-
corrected using a variety of methods and techniques. The vast majority of available observations are actually
removed during pre-processing and never make it to the analysis. If and when an observation is finally used, it
is presumed to be sufficiently accurate to have a positive impact on the assimilation. The analysis increments in
a bias-blind analysis scheme are in fact treated as corrections to the model. It therefore seems reasonable, or at
least logically consistent, to view any remaining non-random component of the analysis increments as resulting
from model errors. In practice, of course, it is necessary to constantly reassess the underlying assumption of
unbiased observations by looking for indications that observation bias is wrongly attributed to the model.

One such indication would be that the bias correction causes a deterioration of forecast skill. It is also useful
to compare the magnitude of the bias estimates produced by the algorithm with estimates of background bias
in a bias-blind control experiment. The latter can be directly estimated from the observed-minus-background
residuals, or by performing an off-line diagnostic bias estimation using (8). If the estimated bias is indeed due
to the background and not to the observations, then its removal from the background should result in a better
analysis, and hence improve the subsequent forecast. Therefore the bias estimates in an assimilation with bias
correction should be smaller than the estimated background bias in the original, bias-blind assimilation. If this

(a)

(b)

(c)

Figure 5: Possible scenarios for the outcome of applying model bias correction during data assimilation:
(a) No bias correction; (b) Bias correction resulting in reduced forecast bias; (c) Bias correction resulting
in increased forecast bias.
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is not the case, then the bias correction actually leads to a worse analysis, perhaps because the bias should
be attributed to the observations, rather than to the background. These possible scenarios are summarized in
Fig. (6).

There may be reasons other than the presence of observation bias that cause the algorithm to fail. Even when
the estimated bias is rightly attributed to the background, the algorithm still does not remove the source of the
bias. For a model which is not perfect there is no guarantee that an unbiased analysis leads to a better forecast.
There may be mechanisms in the model that rapidly force it to a preferred (biased) trajectory. Intermittent bias
correction may provide the model with an ‘unfriendly’ initial state, i.e. one that causes rapid spinup/spindown.
Possibly this can be prevented by an incremental correction scheme during the model integration, but it may be
that only internal changes to the model can solve this problem.

7 Conclusion

We have presented some techniques for estimating and correcting systematic components of background errors
during data assimilation. The approach is strictly statistical, i.e., it tries to make the best use of the available
observations to correct errors in the background fields, without addressing the mechanisms that cause the errors
in the first place. Clearly it would be preferable to remove the source of the errors rather than merely treating
symptoms, but this can be said about any analysis system. It seems only logical that an analysis algorithm be
designed to correct all error components that can be identified from the available data.
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