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Abstract 
The influence matrix is used in ordinary least-squares applications for monitoring statistical multiple-regression 
analyses. Concepts related to the influence matrix provide diagnostics on the influence of individual data on the 
analysis, the analysis change that would occur by leaving one observation out, and the effective information content 
(degrees of freedom for signal) in any sub-set of the analysed data. In this paper, the corresponding concepts have been 
derived in the context of linear statistical data assimilation in Numerical Weather Prediction. An approximate method to 
compute the diagonal elements of the influence matrix (the self-sensitivities) has been developed for a large-dimension 
variational data assimilation system (the 4D-Var system of the European Centre for Medium-Range Weather Forecasts). 
Results show that, in the Spring 2003 operational system, 15% of the global influence is due to the assimilated 
observations in any one analysis, and the complementary 85% is the influence of the prior (background) information, a 
short-range forecast containing information from earlier assimilated observations. About 25% of the observational 
information is currently provided by surface-based observing systems, and 75% by satellite systems. 

Low-influence data points usually occur in data-rich areas, while high-influence data points are in data-sparse areas or 
in dynamically active regions. Background error correlations also play an important role: High correlation diminishes 
the observation influence and amplifies the importance of the surrounding real and pseudo observations (prior 
information in observation space). Incorrect specifications of background and observation error covariance matrices can 
be identified, interpreted and better understood by the use of influence matrix diagnostics for the variety of observation 
types and observed variables used in the data assimilation system. 

1. Introduction 
Over the years, data assimilation schemes have evolved into very complicated systems, such as the four-
dimensional variational system (4D-Var) (Rabier et al. 2000) at the European Centre for Medium-Range 
Weather Forecasts (ECMWF). The scheme handles a large variety of both space and surface-based 
meteorological observations. It combines the observations with prior (or background) information of the 
atmospheric state and uses a comprehensive (linearized) forecast model to ensure that the observations are 
given a dynamically realistic, as well as statistically likely response in the analysis.  

Effective monitoring of such a complex system, with the order of 107 degrees of freedom and more than 106 
observations per 12-hour assimilation cycle, is a necessity. The monitoring cannot be restricted to just a few 
indicators, but a complex set of measures is needed to indicate how different variables and regions influence 
the data assimilation (DA) scheme. Measures of the observational influence are useful for understanding the 
DA scheme itself: How large is the influence of the latest data on the analysis and how much influence is due 
to the background? How much would the analysis change if one single influential observation were 
removed?  How much information is extracted from the available data? It is the aim of this work to provide 
such analytical tools. 

We turn to the diagnostic methods that have been developed for monitoring statistical multiple regression 
analyses. In fact, 4D-Var is a special case of the Generalized Least Square (GLS) problem (Talagrand, 1997) 
for weighted regression, thoroughly investigated in the statistical literature. 
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The structure of many regression data sets makes effective diagnosis and fitting a delicate matter. In robust 
(resistant) regression, one specific issue is to provide protection against distortion by anomalous data. In fact, 
a single unusual observation can heavily distort the results of ordinary (non-robust) LS regression (Hoaglin 
et al. 1983). Unusual or influential data points are not necessarily bad data points: they may contain some of 
the most useful sample information. For practical data analysis, it helps to judge such effects quantitatively. 
A convenient diagnostic measures the effect of a (small) change in the observation  on the corresponding 

predicted (estimated) value 
iy

iy . In LS regression this involves a straightforward calculation: any change in 

 has a proportional impact on iy iy . The desired information is available in the diagonal of the hat matrix 

(Velleman and Welsh, 1981), which gives the estimated values iy  as a linear combination of the observed 

values . The term hat matrix was introduced by J.W. Tukey (Tukey, 1972) because the matrix maps the 

observation vector y into ŷ, but it is also referred to as the influence matrix since its elements indicate the 
data influence on the regression fit of the data. The matrix elements have also been referred to as the 
leverage of the data points: in case of high leverage a unit y-value will highly disturb the fit (Hoaglin and 
Welsh, 1978). Concepts related to the influence matrix also provide diagnostics on the change that would 
occur by leaving one data point out, and the effective information content (degrees of freedom for signal) in 
the data. 

iy

These influence matrix diagnostics are explained in Section 2 for ordinary least-squares regression. In 
Section 3 we derive the corresponding concepts for linear statistical DA schemes. It will be shown that 
observational influence and background influence complement each other. Thus, for any observation  

either very large or very small influence could be the sign of inadequacy in the assimilation, and may require 
further investigation. A practical approximate method that enables calculation of the diagonal elements of the 
influence matrix for large-dimension variational schemes (such as ECMWF’s operational 4D-Var system) is 
derived in section 3.3. In section 4 we present results and selected examples related to data influence 
diagnostics, including an investigation into the effective information content in several of the main types of 
observational data. Conclusions are drawn in Section 5. 

iy

2. Classical statistical definitions of influence matrix and self-sensitivity 
The ordinary linear regression model can be written: 

  2.1 y = Xβ + ε

where y is an m×1 vector for the response variable (predictand); X is an m× q matrix of q predictors; β is a 
q×1 vector of parameters to be estimated (the regression coefficients) and ε is an m×1 vector of errors (or 
fluctuations) with expectation E(ε)=0 and covariance var(ε)=σ2Im (that is, uncorrelated observation errors). In 
fitting the model (2.1) by LS, the number of observations m has to be greater than the number of parameters 
q in order to have a well-posed problem, and X is assumed to have full rank q.  

The LS method provides the solution of the regression equation as β=(XTX)-1XTy. The fitted (or estimated) 
response vector ŷ is thus:  

 ŷ = Sy  2.2 

where 

  2.3 -1TS = X(X X) XT
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is the m×m influence matrix (or hat matrix). It is easily seen that  
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for the off-diagonal (i≠j)  and the diagonal (i=j) elements, respectively. Thus, Sij is the rate of change of  

with respect to  variations. The diagonal element Sii, instead, measures the rate of change of the regression 

estimate  with respect to variations in the corresponding observation yi.  For this reason the self-sensitivity 

(or self-influence, or leverage) of the ith data point is the ith diagonal element Sii, while an off-diagonal 
element is a cross-sensitivity diagnostic between two data points. 

ˆiy

jy

ˆiy

Hoaglin and Welsh (1978) discuss some properties of the influence matrix. The diagonal elements satisfy  

  2.6 .........0 1 1,2,...,iiS i≤ ≤ = m

as S is a symmetric and idempotent projection matrix. The covariance of the error in the estimate y , and the 

covariance of the residual ˆ= −r y y  are related to S by  
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The trace of the influence matrix is 
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(in fact S has m eigenvalues equals to 1 and m-q zeros). Thus, the trace is equal to the number of parameters. 
The trace can be interpreted as the amount of information extracted from the observations or degrees of 
freedom for signal (Wahba et al. 1995). The complementary trace, tr( ) (m tr= −I - S S , on the other hand, 
is the degree of freedom for noise, or simply the degree of freedom (df) of the error variance, widely used for 
model checking (F test). 

A zero self-sensitivity Sii=0 indicates that the ith observation has had no influence at all in the fit, while Sii=1 
indicates that an entire degree of freedom (effectively one parameter) has been devoted to fitting just that 
data point. The average self-sensitivity value is q/m and an individual element Sii is considered ‘large’ if its 
value is greater than three times the average (Welleman and Welsh, 1981). By a symmetrical argument a 
self-sensitivity value that is less than one-third of the average is considered ‘small’. 

Furthermore, the change in the estimate that occurs when the ith observation is deleted is  

 ( )ˆ ˆ
(1 )

i ii
i i

ii

Sy y r
S

−− =
− i  2.9 
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where   is the LS estimate of yi obtained by leaving-out the ith observation of the vector y and the  ith 

row of the matrix X. The formula shows that the impact of deleting ( ,  on  can be computed by 

knowing only the residual ri and the diagonal element Sii - the nearer the self-sensitivity Sii is to one, the more 
impact on the estimate . A related result concerns the so-called cross-validation (CV) score: that is, the LS 

objective function obtained when each data point is in turn deleted (Whaba, 1990, theorem 4.2.1): 

( )ˆ i
iy −

)i iy x ˆiy

ˆiy
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This theorem shows that the CV score can be computed by relying on the all-data estimate ŷ  and the self-
sensitivities, without actually performing m separate LS regressions on the leaving-out-one samples. 

The definitions of influence matrix (2.4) and self-sensitivity (2.5) are rather general and can be applied also 
to non-LS and nonparametric statistics. In spline regression, for example, the interpretation remains 
essentially the same as in ordinary linear regression and most of the results, like the CV-theorem above, still 
apply. In this context, Craven and Wahba (1979) proposed the generalized-CV score, replacing in (2.10)  Sii 
by the mean tr(S)/q.  For further applications of influence diagnostics beyond usual LS regression (and 
further references) see Ye (1998) and Shen et al. (2002). The notions related to the influence matrix that we 
have introduced here will in the following section be derived in the context of a statistical analysis scheme 
used for data assimilation in numerical weather prediction (NWP). 

3. Observational influence and self-sensitivity for a DA scheme 
3.1. Linear statistical estimation in Numerical Weather Prediction 
Data assimilation systems for NWP provide estimates of the atmospheric state x by combining 
meteorological observations y with prior (or background) information xb. A simple Bayesian Normal model 
provides the solution as the posterior expectation for x, given y and xb. The same solution can be achieved 
from a classical frequentist approach, based on a statistical linear analysis scheme providing the Best Linear 
Unbiased Estimate (Talagrand, 1997) of x, given y and xb. The optimal GLS solution to the analysis problem 
(see Lorenc, 1986) can be written 

 a nx = K by + (I - KH)x  3.1 

The vector xa is the ‘analysis’. The gain matrix K (n× m) takes into account the respective accuracies of the 
background vector xb and the observation vector y as defined by the n× n covariance matrix B and the m×m 
covariance matrix R, with 

  3.2 1 1 1T− − −K = (B + H R H) H R 1T −

b

Here, H is a m× n matrix interpolating the background fields to the observation locations, and transforming 
the model variables to observed quantities (e.g. radiative transfer calculations transforming the models 
temperature, humidity and ozone into brightness temperatures as observed by several satellite instruments). 
In the 4D-Var context introduced below, H is defined to include also the propagation in time of the 
atmospheric state vector to the observation times using a forecast model. 

Substituting (3.2) into (3.1) and projecting the analysis estimate onto the observation space, the estimate 
becomes 

 ˆ a p=y = Hx HKy + (I - HK)Hx  3.3 
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It can be seen that the analysis state in observation space (Hxa) is defined as a sum of the background (in 
observation space, Hxb) and the observations y, weighted by the m×m square matrices I - and , 
respectively.  

HK HK

Equation (3.3) is the analogue of (2.1), except for the last term on the right hand side. In this case, for each 
unknown component of Hx, there are two data values: a real and a ‘pseudo’ observation. The additional term 
in (3.3) includes these m pseudo-observations, representing prior knowledge provided by the observation-
space background Hxb. From (3.3) and (2.4), the analysis sensitivity with respect to the observations is 
obtained 

 
ˆ T T∂

∂
yS = = K H
y

 3.4 

Similarly, the analysis sensitivity with respect to the background (in observation space) is given by  

 
ˆ

( )
T T∂

=
∂ b

y I - K H
Hx

=I−S 3.5 

We focus here on the expressions (3.4) and (3.5). The influence matrix for the weighted regression DA 
scheme is actually more complex (see Appendix 1), but it obscures the dichotomy of the sensitivities 
between data and model in observation space.  

The (projected) background influence is complementary to the observation influence. For example, if the 
self-sensitivity with respect to the ith observation is Sii, the sensitivity with respect the background projected 
at the same variable, location and time will be simply 1-Sii. It also follows that the complementary trace, 
tr(I−S)=m−tr(S), is not the df for noise but for background, instead. That is the weight given to prior 
information, to be compared to the observational weight tr(S). These are the main differences with respect to 
standard LS regression. Note that the different observations can have different units, so that the units of the 
cross-sensitivities are the correspondent unit ratios. Self-sensitivities, however, are pure numbers (no units) 
as in standard regression. Finally, as long as R is diagonal, (2.6) is assured, but for more general non-
diagonal R-matrices it is easy to find counter-examples to that property. 

Inserting (3.2) into (3.4), we obtain 

  3.6 1 1 1 1T− − − −= +S R H(B H R H) HT

1)−As  is equal to the analysis error covariance matrix A, we can also write S=R-1HAHT. 1 1( T− −+B H R H

3.2. An idealized case, for illustration 
Assume there are two observations, each coincident with a point of the background - that is H=I2. Assume 

the error of the background at the two locations have correlation ", that is B= 2 1
1b

α
σ

α
 

 
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2, and that R= . For this simple case S is obtained with 2 1 0
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where 2
o br 2σ σ= . We can see that if the observations are very close (compared to the scale-length of the 

background error correlation), i.e α ~1, then 

 11 22 12 21
1

2
S S S S

r
= = =

+  3.9 

Furthermore, if σb=σo, that is r=1, we have three pieces of information with equal accuracy and S11=S22=1/3. 
The background sensitivity at both locations is 1-S11=1-S22=2/3. If the observation is much more accurate 
than the background (σb>>σo), that is r~0, then both observations have influence S11=S22=1/2, and the 
background sensitivities are 1-S11=1-S22=1/2.  

We now turn to the dependence on the background-error correlation α, for the case σb=σo (r=1). We have  

 
2

11 22 2

2
4

S S α
α
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= =

−
 3.10 

 12 21 24
S S α
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−
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If the locations are far apart, such that α~0, we obtain S11=S22=1/2,  the background sensitivity is also ½ and 
S12=S21=0. We can conclude that where observations are sparse, Sii and the background-sensitivity are 
determined by their relative accuracies (r) and the off-diagonal terms are small (indicating that surrounding 
observations have small influence). Conversely, where observations are dense, Sii tends to be small, the 
background-sensitivities tend to be large and the off-diagonal terms are also large.  

It is also convenient to summarize the case σb=σo (r=1) by showing the projected analysis at location 1 

 2
1 1 12

1ˆ (2 ) 2 ( )
4

y y xα α
α

= − + − −− 2 2x y   3.12 

The estimate ŷ1 depends on y1, x1 and an additional term due to the second observation. We see that, with a 
diagonal R, the observational contribution is generally devalued with respect to the background because a 
group of correlated background values count more than the single observation [α→± 1, (2-α2)→1]. From the 
expression above we also see that the contribution from the second observation is increasing with the 
correlation’s absolute value, implying a larger contribution due to the background x2 and observation y2 
nearby observation y1. 

3.3. Approximate calculation of self-sensitivity in a large variational analysis system 
In a variational analysis scheme, the analysis error covariance matrix A is approximately the inverse of the 
matrix of second derivatives (the Hessian) of the cost function J, i.e. A=(J″)-1 (Rabier and Courtier, 1992). 
Given the large dimension of the matrices involved, J″ and its inverse cannot be computed explicitly. 
Following Fisher and Courtier (1995) we use an approximate representation of the Hessian based on a 
truncated eigen-vector expansion with vectors obtained through the combined Lanczos/conjugate gradient 
algorithm. The calculations are performed in terms of a transformed variable P, P=L-1(x-xb), with L chosen 
such that . The transformation L thus reduces the covariance of the prior to the identity matrix. In 
variational assimilation L is referred to as the change-of-variable operator (Courtier et al. 1998). 

1 T−B = L L
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The summation in (3.13) approximates the variance reduction B-A due to the use of observations in the 
analysis. In ECMWF’s operational data assimilation system, the variances of analysis error are computed 
according to this method. The variances are inflated to provide estimates of short-term forecast (background) 
error variances to be used as background errors in the next analysis cycle (Fisher, 1996). The Hessian eigen-
vectors are also used to precondition the minimization (Fisher and Andersson, 2001). 

The diagonal of the background error covariance matrix B in (3.13) is also computed approximately, using 
the randomisation method proposed by Fisher and Courtier (1995). From a sample of N random vectors ui (in 
the space of the control-vector χ), drawn from a population with zero mean and unit Gaussian variance, a 
low-rank representation of B (in terms of the atmospheric state variables x) is obtained by  

 
1

1 ( )( )
N

T
i i

i
u u

N =

= ∑B L L  3.14 

This approximate representation of B has previously been used by Andersson et al. (2000) to diagnose 
background errors in terms of observable quantities, i.e. HBHT. 

Inserting 3.13 and 3.14 into 3.6 we arrive at an approximate method for calculating S, that is practical for a 
large dimension variational assimilation  (both 3D and 4D-Var): 

 1

1 1
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Only the diagonal elements of S are computed and stored - that is, the analysis sensitivities with respect to 
the observations, or self-sensitivities Sii. The cross-sensitivity Sij for i≠j, that represents the influence of the 
jth observation to the analysis at the ith location, is not computed. Note that the approximation of the first 
term is unbiased, whereas the second term is truncated such that variances are underestimated. For small M 
the approximate Sii will tend to be over-estimates. For the extreme case M=0 Eq.(3.15) gives S=R-1HBHT 
which in particular can have diagonal elements larger than one if elements of HBHT are larger than the 
corresponding elements of R. We investigate the effects of the approximations on the calculated Sii values in 
section 4.4. 

Note that Eq.(2.9) can be applied to quantify how much the analysis at a given observation location would 
change by deleting the observation itself. The change depends only on the self-sensitivity and the residual 
value at that location. Note also that the tr(S) provides estimates of the information content of the data with 
respect to the background, and is equal to the degrees of freedom for signal as studied by e.g. Purser and 
Huang, 1993, Rabier et al. (2002) and Fourrié and Thépaut (2003) in the context to remote-sensing retrieval 
applications. Recently Fisher (2003) computed an estimate of the global tr(S) by using the Bay et al.(1996) 
method, without explicitly computing the individual elements Sii. Comparison with Fisher’s (2003) estimate 
has provided validation of our method, in terms of the global trace. 

4. Results 
The diagonal elements of the influence matrix have been computed for the operational 4D-Var assimilation 
system. The calculations in Eq(3.15) have been carried out on 60 model levels at T95 spectral truncation 
q=2,802,912, which is the resolution used for estimation of analysis and background error variances in the 
operational system. The observation departures (y-Hxb) were calculated by comparing the observations with 
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a 12-hour forecast integration at T319 resolution. The experiment date is the 13th February 2003 at 12 UTC 
using observations between 03 and 15 UTC. The number of Hessian vectors used here is M=753 and the 
number of random B vectors is N=500 (M=40 and N=50 in operations). The counts of assimilated 
observations for each main observation type are given in Table.1. The global total number of observations in 
this case was p=1,489,777. A large proportion of the used data is provided by satellite systems (Thépaut and 
Andersson 2003): QuikSCAT near-surface winds, SATOB cloud-drift winds, AMSU-A microwave 
radiances, HIRS infrared radiances, SSMI microwave imager, GOES and METEOSAT water-vapour 
radiances, and ozone data. The remainder are surface-based observing systems (see WMO 1996).   

Table 1Data counts by observation type, 20030213-12 UTC. The total number of data is p=1,489,777. 

 

4.1. Self-sensitivity examples 
Self-sensitivities for SYNOP surface pressure observations are shown in Figure1. Each box indicates the 
observation influence at the observation location. Data points with influence greater than one (yellow) will 
be investigated in section 4.4.  Low-influence data points have large background influence (see 3.4 and 3.5), 
which is the case in data-rich areas such as North America and Europe (observation influence ~ 0.2). In data-
sparse areas individual observations have larger influence: in the Polar regions, where there are only few 
isolated observations, Sii ~ 1 and the background has small influence on the analysis.  

In dynamically active areas (Figure1: North Atlantic), several fairly isolated observations have large 
influence on the analysis. This is due to the evolution of the background-error covariance matrix as 
propagated by the forecast model in 4D-Var (Thépaut et al. 1993, 1996). As a result, the data assimilation 
scheme can fit these observations more closely. 

Similar features can be seen in Figure2 showing the influence of u-component wind observations for aircraft 
(AIREP) data between 300 and 200 hPa. Isolated flight tracks over Atlantic and Pacific oceans show larger 
influences than measurements over data-dense areas over America and Europe. 

4.2. Trace diagnostic 
We define the Global Average Influence (GAI) as the globally averaged observation influence. It is given by 

 
( )trGAI
p

=
S

 4.1 

where p is the total number of observations. In our experiment we found that GI=0.15. Consequently, the 
average background global influence to the analysis at observation points is equal to 0.85 (see 3.5).  

Another index of interest is the Partial Influence (PAI) for any selected subset of data  

 
ii

i I

I

S
PAI

p
∈=
∑

 4.2 

where pI is the number of data in subset I. The subset I can represent a specific observation type, a specific 
vertical or horizontal domain, a particular meteorological variable, for example. In Figure3 the PAI for the  
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Figure1: Observation Influence of surface pressure SYNOP data valid for 13 February 200312 UTC 

 
Figure 2: Observation Influence of wind u-component from AIREP data between 200 and 300 hPa. 
Analysis experiment valid on 13 February 2003 12 UTC 

different observation types is plotted for three different geographical areas: the Northern Hemisphere extra 
tropics (PAI=15%), the Tropics (PAI=17.5%) and the Southern Hemisphere extra tropics (PAI=12%). It is 
clear that METEOSAT and GOES radiances have a relatively large average influence (PAI=35%) in the 
Tropics and in the Southern Hemisphere. In the Northern Hemisphere, DRIBU (drifting buoy) observations 
have PAI=40%, mainly from surface pressure measurements. On the other hand, used ozone observations 
have very small average influence on the analysis. Also AMSU-A radiance data have a low average 
influence PAI<10%. Similar diagnostics can be obtained for any other data subset of interest. 

As we found relatively high influence from satellite measurements that have strong dependence on 
atmospheric humidity (i.e. GOES, METEOSAT, SSMI and HIRS), we show in Figure4 a scatter plot for all 
types of humidity-related observations (every type is a subset I). In the top panel, normalized sub-traces of 
tr(S) are plotted versus pI/p for the tropical area. The sub-traces represent the influence of relative humidity 
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(rh) from SYNOP and DRIBU, specific humidity (q) from TEMP and radiances from METEOSAT (2 
satellites), GOES (1 satellite), SSMI (3 satellites, 7 channels) and HIRS (2 satellites, 8 channels). The sum of 
all subsets I defines the subset F.  On the x-axis, the relative number of observations per sub-trace is 
normalized with respect to the total observation number (frequency=pI/p). 
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Figure 3: Average Self-sensitivity (AS, in %) for each of 
the main observation types, for the Northern 
Hemisphere extra-tropics (top left panel) PAI=15%, the 
Tropics (top right panel) PAI=17.5% and the Southern 
Hemisphere extra-tropics (bottom left panel) PAI=12%. 

 

 

Figure 4: In the top left panel normalized sub-traces of 
Tr(S) are plotted versus pI/p for the tropical area and for rh 
from SYNOP and DRIBU, q from TEMP and radiances 
from METEOSAT, GOES,  SSMI and HIRS. Residuals (self-
sensitivities minus frequency) with respect to the bisect line 
plotted versus pI/p are shown top right. The lower panel is 
similar but values are normalized with respect to partial 
amount. 
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In the mid panel, the residuals ( ) with respect to the bisect regression line are 

plotted versus pI/p (as before). The mid plot highlights humidity data types with particularly high or low self-
sensitivity. We find that the radiances from the HIRS (channels 11 and 12), GOES and METEOSAT satellite 
data types have a significantly higher (p-value=0) self-sensitivity than all the other assimilated data. Also, 
these observation types are significantly (p-value=8%) more influential than the other humidity-related 
observations. In fact, normalizing the residuals with respect to partial amounts 
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panel) shows the high influence of HIRS channel 11, in particular.  Further investigations of this and similar 
diagnostics should be performed to find out if this is indication that aspects of the background error or 
observation error covariances need to be adjusted, or if what we see is the correct behaviour given the 
relative accuracies of the background and the observation error for the various data types. 

4.3. Information content 
In Section 2 we showed that tr(S) can be interpreted as a measure of the amount of information extracted 
from the observations. In fact, in non-parametric statistics, tr(S) measures the ‘equivalent number of 
parameters’ or degrees of freedom for signal. Having obtained values of all the diagonal elements of S (using 
3.15) we can now obtain reliable estimates of the information content in any subset of the observational data. 
In Figure 5 we illustrate this in one example. It must be noted that this theoretical measure of information 
content does not necessarily translate to value in terms of forecast impact. The figure shows the information 
content for all main observation types. We see that AMSU-A radiances are the most informative data type, 
providing 22% of the total observational information. HIRS follows with 17% and SSMI with 13%. The 
information content of AIREP, QuikSCAT, TEMP, GOES and Meteosat each is 6-8% while SYNOP, 
SATOB and PILOT are each less than 5%. A large part of the AMSU-A information is with respect to 
stratospheric temperature. Most of the SSMI and HIRS information is with respect to humidity. DRIBU and 
OZONE information content is small: ozone observations have a very small average influence (Figure3) and 
dense data coverage while DRIBU observations have large mean influence per observation but much lower 
data counts (Figure3). The ozone data are important for the ozone assimilation in spite of their low 
information content per analysis cycle. Ozone is generally a long-lived species, which allows observational 
information to be advected accurately by the model over periods of several days. The importance of AMSU-
A correlates well with recent data impact studies by (Bouttier and Kelly, 2001; Kelly 2003 personal 
communication). 
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Figure5: Information content i.e. degree of freedom for signal for the main data types in the assimilation. 
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Our results are in good qualitative agreement with those obtained by Fisher (2003) using Bay et al.’s (1996) 
algorithm. The advantage of the influence-matrix approach is that it allows the computation of information 
content for any subset of data by straightforwardly summing up the elements corresponding each subset. The 
methods based on a global trace estimate, however, require that the analysis scheme is re-run once per data 
sub-division (Fisher 2003). 

4.4. High-influence data 
From (2.6) it is known that self-sensitivities cannot be larger than one but we have seen from Figure1 that 
some Sii are greater than one.  In this paragraph the nature of the upper-bound values is explained. 

4.4.1. Self-sensitivity calculation approximation 

In Figure 6a the self-sensitivities for HIRS channel-11 are shown. Values greater than one are shown in 
yellow. Here only M=40 Hessian eigen-vectors and N=50 random B vectors have been used to compute the 
self-sensitivities. In this worst case, 67% of the self-sensitivities are greater than one, in contrast with (2.6), 
which states that the diagonal elements of S are bounded to the interval between zero and one. The 
occurrence of Sii>1 is partly due to the approximate nature of our method for calculation of self-sensitivity. 
Approximations in both of the two terms of (3.15) contribute to the problem. In the second term the number 
of Hessian eigen-vectors is truncated to M. The term is therefore underestimated, and Sii will tend to be over-
estimated. The degree of over-estimation depends on the structure of the covariance reduction matrix B-A.  

 

 
Figure 6: Radiances Influence from HIRS channel 11. (a) M=40 Hessian eigen-vectors used. (b)  M=753 
Hessian eigen-vectors used. 
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For an analysis in which observations lead to strongly localised covariance reduction (such as the humidity 
analysis with its short co-variance length scales ~180 km, and large observational impacts) a large M is 
required to approximate B-A accurately. We repeated the calculations for several values of M>40, to the 
upper limit M=735 that could reasonably be afforded given the available computer resources. In Figure6b we 
show the result corresponding to Figure6a but for M=753 Hessian vectors. The number of Sii>1 for this 
HIRS channel is now reduced by 30%. The approximate computation is mostly affecting the self-sensitivities 
close to the upper bound leaving the self-sensitivities <0.7 almost unaffected. 

HIRS channel 11 is the data set for which the problem is most acute. In fact, even for M=40, self-sensitivities 
greater than one appear only for a very small proportion (2%) of the global set of observations. In Figure7, 
the proportion of observations for which Sii>1 is plotted versus M, the number of Hessian vectors used. The 
plot shows a gradual decrease of Sii>1 as M increases, as expected. The curve seems to approach 10,000 
Sii>1 (0.7% in the plot) for M somewhere between 1,000 and 2,000. However, increasing the number of 
Hessian vectors slightly increases the number of self-sensitivities less than zero (by 0.5%). This problem can 
be understood by looking at the approximations introduced through the first term of (3.15). The truncation N 
of the first term determines the randomisation sample size: larger N leads to smaller noise. The noise is 
unbiased - that is, the term is neither over nor under-estimated on average. The randomisation noise in the 
diagonal elements is in the order 10% with N=50 (Andersson et al. 2000). With N=500, values Sii<0 have all 
but disappeared. 
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Figure 7: Proportion of self-sensitivity values greater than one (in %) versus the number of Hessian 
vectors used to compute the variances of B-A, using the approximate method described in Eq.(3.15).   

4.4.2. Ill-conditioning problem  

A set of linear equations is said to be ill-conditioned if small variations have a large effect on the exact 
solution y . For example, if X (or its analogue in 4D-Var) is nearly singular small changes in its element can 
cause large variations in data assimilation, serious effect on the stability and accuracy of the solution. A 
measure of ill-conditioning is the condition number K defined as the ratio between the largest and the 
smallest nonzero singular value of X, that is, the square roots of the eigen-value of XXT. Regression models 
are notoriously ill-conditioned when the degree is higher than five.  

It is not uncommon that variates (regressors) can be in linear relationship with a set of variates (collinearity). 
This means that XTX will be near singularity, the smallest eigen-value will be small and K will be large. In 
4D-Var K is typically 104-105. Cases of poor convergence of the 4D-Var solution algorithm have been 

studied (Andersson et al. 2000). It was found that when the ratio σb/σo between specified background and 
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observation errors is large, or the observation density is large, the 4D-var problem can be ill-conditioned and 
poor convergence in the minimization can result. 

(a) (b) 

(c) (d)
Figure 8: (a) DRIBU surface pressure influence valid on 13 February 200312 UTC. (b) Ratio between 
background and observation standard deviation for same experiment shown in (a).(c)DRIBU surface 
pressure influence from a flow-dependent background standard deviation experiment cycled for 4 days 
and valid on 13 February 200312 UTC. (d) as (b) bur for experiment shown in (c) 

We have found that self-sensitivities exceeding the upper bound (Sii>1) can provide indication of data that 
contribute to poor conditioning of the analysis, because of large σb/σo ratio. To illustrate this, self-
sensitivities computed in a single analysis experiment have been compared to self-sensitivities computed 
during a modified four-day assimilation cycle. In Figure 8, self-sensitivities for DRIBU surface pressure 
observation over the North Atlantic (Figure 8a) are shown together with the mean sea level pressure field. 
Higher self-sensitivities (>0.6) are close to a dynamically active area (a developing low). Figure 8b shows 
that the ratio σb/σo for the same observations is close to one. The patterns in both Figure 8a and b are 
dependent on the background error variance specification, which in ECMWF practice is modified to account 
for error growth in the prediction over the time interval between analyses (12 hours). Operationally (and in 
Figure 8a and b), the B matrix variances are inflated exponentially in time (Fisher 1996), and the new 
variances are used in the next analysis cycle. In Figure 8c and d the error inflation has instead been 
performed in a flow dependent manner using the tangent linear forecast model (Andersson and Fisher 1999). 
The influence pattern for DRIBU surface pressure is now computed after having cycled the 4D-Var system 
for four days (the experiment started on 9 February 2003 12 UTC). The results shown in panels 8c and d are 
valid at the same time of Figure 8a (13 February 2003 12 UTC). In the region of the low, self-sensitivities 
are now larger and some are exceeding one (Figure 8c). Also the ratio σb/σo (Figure8d) has increased, in 
some locations by a factor three. Variance inflation and propagation (applied to the background standard 
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deviation) can thus generate collinearity and potentially ill-condition the estimation problem. We know that 
data points with self-sensitivities greater than one are due to the approximate nature of our computation, but 
when they occur they can nevertheless be valuable by drawing attention to those data points that may be 
contributing towards ill-conditioning of 4D-Var.  

5. Conclusions 
The influence matrix is a well-known concept in multi-variate linear regression, where it is used to identify 
influential data and to predict the impact on the estimates of removing individual data from the regression. In 
this paper we have derived the influence matrix in the context of linear statistical analysis schemes, as used 
for data assimilation of meteorological observations in numerical weather prediction (Lorenc 1986). In 
particular we derive and implement an approximate method to compute the diagonal elements of the 
influence matrix (the self-sensitivities) in ECMWF’s operational data assimilation system (4D-Var). Our 
approach is necessarily approximate due to the large dimension of the estimation problem at hand: the 
number of estimated parameters is of the order 106  (8*106 in operational practice, and 3*106 in the 
calculations presented here), and the number of observational data is around 1.5*106.  

The self-sensitivity provides a quantitative measure of the observation influence in the analysis. In robust 
regression, it is expected that the data have similar self-sensitivity (sometimes called leverage) - that is, they 
exert similar influence in estimating the regression line. Disproportionate data influence on the regression 
estimate can have different reasons: First, there is the inevitable occurrence of incorrect data. Second, 
influential data points may be legitimately occurring extreme observations. However, even if such data often 
contain valuable information, it is constructive to determine to which extent the estimate depends on these 
data. Moreover, diagnostics may reveal other patterns e.g. that the estimates are based primarily on a specific 
sub-set of the data rather than on the majority of the data. We provided an illustration with respect to 
humidity-related observations in 4D-Var showing particularly large influence of HIRS channel 11. 

In the context of 4D-Var there are many components that together determine the influence given to any one 
particular observation. First there is the specified observation error covariance R, which is usually well 
known and obtained simply from tabulated values. Second, there is the background error covariance B, 
which is specified in terms of transformed variables that are most suitable to describe a large proportion of 
the actual background error covariance. The implied covariance in terms of the observable quantities is not 
immediately available for inspection, but it determines the analysis weight given to the data. Third, the 
dynamics and the physics of the forecast model propagate the covariance in time, and modify it according to 
local error growth in the prediction.  The influence is further modulated by data density. We showed 
examples for surface pressure and aircraft wind observations indicating that low influence data points occur 
in data-rich areas while high influence data points are in data-sparse regions or in dynamically active areas. 
Background error correlations also play an important role. In fact, very high correlations drastically lessen 
the observation influence (it is halved in the idealized example presented in Section 3.2) in favour of 
background influence and amplify the influence of the surrounding observations.  

In this study the global observation influence per assimilation cycle has been found to be 15%, and 
consequently the background influence is 85%. Thus, on average the observation influence is low compared 
to the influence of the background (the prior). However, it must be taken into account that the background 
contains observation information from the previous analysis cycles. The theoretical information content (the 
degrees of freedom for signal) for each of the main observation types was also calculated. It was found that 
AMSU-A radiance data provide the most information to the analysis (22%), followed by HIRS (17%), SSMI 
(13%), AIREP, QuikSACT, TEMP, Goes and Meteosat each providing 6-8 %. It must be stressed that this 
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ranking is not an indication of relative importance of the observing systems for forecast accuracy. The results 
compare well with independent estimates provided by Fisher (2003).   

If the influence matrix were computed without approximation then all the self-sensitivities will be bounded 
in the interval zero to one. With the approximate method used here out-of-bound self-sensitivities occur if 
the Hessian representation based on an eigen-vector expansion is truncated, especially when few eigen-
vectors are used. However, it has been shown that this problem affects only a small percentage of the self-
sensitivities computed in this study, and in particular those that are closer to one. Remaining values greater 
than one can be due to large background to observation error ratio, which is one factor that is known to 
contribute towards ill-conditioning and poor convergence of the 4D-Var algorithm.  

Self-sensitivities provide an objective diagnostic on the performance of the assimilation system. They could 
be used in observation quality control to protect against distortion by anomalous data (however this aspect 
has not been explored within the current study). Self-sensitivities also provide indication on model and 
observation error specification and tuning. Incorrect specifications can be identified, interpreted and better 
understood through observation influence diagnostics, partitioned e.g. by observation types, variable, levels, 
and regions. 

In the near future more satellite data will be used and likely be thinned. Thinning has to be performed either 
to reduce the observation error spatial correlation (Bormann et al. 2003) or to reduce the computational cost 
of the assimilation. The observation influence provides an objective way of selecting observations dependent 
on their local influence on the analysis estimate to be used in conjunction with forecast impact assessments. 
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Appendix 
Under the frequentist approach, the regression equations for observation 

  oy = Hθ+ ε

and for background 

  b bx = θ+ ε

are assumed to have  uncorrelated error vectors εo and εb,  zero vector means and variance matrices R and B, 
respectively. The θ parameter   is the unknown system state (x) of dimension n. These regression equations 
are summarized as a weighted regression 

  z = Xθ+ ε

where  [ ]T
b=z y x is (m+n)× 1  ; [ ]T

n=X H I is (m+n)× n and [ ]T
o b=ε ε ε is (m+n)×1 with zero mean and 

variances matrix  

  
0

0
 
 
 

R
Ω =

B

The generalized LS solution for θ is BLUE and is given by 

  A1.1 1 1 1ˆ ( )T T− − −=θ X Ω X X Ω z

see Talagrand (1997). After some algebra this equation equals (3.1). Thus 

 [ ] 1 1 1ˆ ( )T T T
a a

− − −= = =z Xθ Hx x X X Ω X X Ω z  

and by (2.5) the influence matrix becomes 

 
1 1

1 1

ˆˆ T
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− −

− −
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where ; ; ;a a a
yy yb by bb

b b

∂ ∂ ∂
= = = =

∂ ∂ ∂
Hx x Hx xS S a∂

∂
S S

y y x x
. Note that Syy=S as defined in (3.4). 

Generalized LS regression is different from ordinary LS because the influence matrix is not symmetric 
anymore. For idempotence, using (A1.1) it easy to show that SzzSzz=Szz. Finally, 

  1 1T
bb n

− −= = −S B A I H R HA

)S
hence, 
  1( ) ( ) (T

bb yytr n tr n tr−= − = −S H R HA

it follows that  

  ( ) ( ) ( )zz yy bbtr tr tr n= + =S S S

The trace of the influence matrix is still equal to the parameter’s dimension. 
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