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Outline
The variational assimilation problem.

Some remarks about B.

General approach to modelling B for the 
ocean:

– modelling correlation functions
– parametrising variances
– including balance and conservation constraints

Examples from 3D-Var and 4D-Var with the 
OPA OGCM. 



The variational assimilation problem

Minimize

Background term

Observation term
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The incremental approximation

Minimize

Background term

where

Observation term (quadratic)

where
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Preconditioning with B

Background term

Preconditioned background term

Define
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2
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Preconditioning with B
is the control vector for the minimization problem.

On the first inner iteration we take             so          .

Consequently, on each inner iteration, we only need 
to specify the inverse of the change of variable:

and its adjoint for computing the gradient of Jo
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v
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Some general remarks about B
B largely determines how observational increments 
are smoothed in space and transferred between 
different model variables.

Linear solution:

B is important in both 3D-Var and 4D-Var.

B is also important for ensemble methods for 
generating realistic initial perturbations (using the 
square root factor U).
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Some general remarks about B

Difficulty diagnosing statistics: there is not enough 
(and never will be) enough information to determine 
all the elements of B (typically > O(1011)).

Computational difficulty: B is too large to store as a 
full matrix.

B must be approximated using a model.

In 3D-Var/4D-Var, B must be implemented as an 
operator :

unless the analysis space is sufficiently small (e.g., 
coefficients of a few ensemble members or EOFs).

xx B→ˆ



Some general remarks about B

Constructing an effective B model involves 
substantial development and tuning!



Some specific remarks about B for the 
ocean

The background state variables in an OGCM:
– temperature (T), salinity (S), sea-surface height (SSH), 

horizontal velocity (u, v). 
(e.g., Weaver et al. 2003 - MWR; Vialard et al. 2003 - MWR)

but may also include the surface forcing fields:
– wind stress (taux, tauy), heat flux (Q), evaporation-

precipitation (E-P).
(e.g., Bonekamp et al. 2001 – JGR)

Ocean observations are relatively sparse so it is 
difficult to estimate background error statistics from 
innovations. Considerable spatial and temporal 
averaging is required (e.g., Martin et al. 2002).



Some specific remarks about B for the 
ocean

With few observations the role of B is critical for 
exploiting the available data-sets effectively (e.g., 
surface altimeter data).

Added complexity due to the presence of 
continental boundaries (natural inhomegeneity, 
boundary conditions, scales, spectra, balance).

Rich variety of scales: mesoscale (Gulf Stream,
Kuroshio regions) ~O(10km) and synoptic scale 
(tropics) ~ O(100km). (e.g., see Martin et al. 2002)



A general approach for modelling B

By definition,

where             etc. denote the difference between the 
background and “true” values of the state variables 
(assumed unbiased).
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A general approach for modelling B
(cf. Derber & Bouttier 1999 - Tellus) 

Suppose (to be justified shortly) 
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A general approach for modelling B
Substitute the expressions for                           into the 
general expression for     and assume that 
are mutually uncorrelated. 

Then we can write                         where

where                                                           etc.
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A strong constraint approach for modelling B
Consider the special case where

Here       is a “strong constraint” (Lorenc 2002).
We only need a univariate statistical model for        

All other covariances are determined implicitly from     
using      and      .
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A strong constraint approach for modelling B
B has a nullspace associated with the “unbalanced” 

components and     .

The reduced control variable is
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A strong constraint approach for modelling B

Recall that for the preconditioned variational 
problem, we need to specify only the inverse of 
the change of variable:

and its adjoint for computing the gradient of     : 

TTTT vCΣδ 2/1Kx =

∗∗ = xK δΣCv T
T

T
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A strong constraint approach for modelling B

Recall that for the preconditioned variational problem, 
we need to specify only the inverse of the change of 
variable:

and its adjoint for computing the gradient of     : 

TTTT vCΣδ 2/1Kx =

∗∗ = xK δΣCv T
T

T
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Univariate correlation modelling using
a diffusion equation 

(Derber & Rosati 1989 - JPO; Egbert et al. 1994 - JGR; 
Weaver & Courtier 2001 - QJRMS)

1D case:

Consider                                     with constant      .                

on                        with                         as 

Integrate from          and           with               as IC: 
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Solution:

This integral solution defines, after normalization, a 
correlation operator     :

The kernel of      is a Gaussian correlation function

where                      is the length scale.

Basic idea : To compute the action of      on a discrete grid 
we can iterate a diffusion operator.

This is much cheaper than solving an integral equation 
directly.
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Theoretical generalization: a family of isotropic 
correlation functions on the sphere

(Wahba 1985; Weaver & Courtier 2001-QJRMS)

Consider the differential operator

with constant            and integers .

Consider solutions of the form

where                  are the spherical harmonics, with
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Theoretical generalization: a family of isotropic 
correlation functions on the sphere

The integral representation of the differential operator is

where

and 

The            so (A) is a valid (positive definite) covariance 
operator (e.g., see Gaspari and Cohn 1999 - QJRMS).
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Theoretical generalization: a family of isotropic 
correlation functions on the sphere

The length scale L of the correlation functions can be defined 
by (Daley 1991):
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Examples

shape spectrum

P=1, M=10

P=1, M=10

P=2, M=2

P=2, M=2

Gaussian
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We can identify the previous differential operator as the 
solution of a generalized diffusion equation (GDE)

using implicit time discretization

where                              ;
;                   

We can use direct or iterative algorithms for solving (A) in 
grid-point space.
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Theoretical generalization: a family of isotropic 
correlation functions on the sphere
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Some remarks on numerical implementation

The full correlation operator is formulated in grid-point 
space as a sequence of operators

is the diffusion operator and is formulated in 3D as a 
product       of a 2D (horizontal) and 1D (vertical) 
operator.

is a diagonal matrix of volume elements, and appears 
in because of the self-adjointness of     .

The factor        means           iterations of the diffusion 
operator.
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GDE-generated correlation functions

Example: T-T correlations at the equator



Some remarks on numerical implementation

We can let                        where       is a diffusion tensor
that can be used to stretch and/or rotate the coordinates 
in the correlation model to account for anisotropic or flow-
dependent structures.

BCs are imposed directly within the discrete expression 
for      using a land-ocean mask.

contains normalization factors to ensure the variances 
of      are equal to one.

The diffusion and recursive filter (Lorenc 1991 – QJRMS; 
Purser et al. 2003 - MWR; Derber lecture) approaches to 
correlation modelling have many similarities.

∇⋅∇→∇ R2

Λ

R

2∇

C



GDE-generated correlation functions
Example: flow-dependent correlations

(Weaver & Courtier 2001-QJRMS; cf. Riishojgaard 1998-Tellus; 
Daley & Barker 2001-MWR)
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Some remarks on numerical implementation

We can let                        where       is a diffusion tensor
that can be used to stretch and/or rotate the coordinates 
in the correlation model to account for anisotropic or flow-
dependent structures.

BCs are imposed directly within the discrete expression 
for      using a land-ocean mask.

contains normalization factors to ensure the variances 
of      are equal to one.

The diffusion and recursive filter (Lorenc 1991 – QJRMS; 
Purser et al. 2002 – MWR; Derber lecture) approaches to 
correlation modelling have many similarities.
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The normalization matrix Λ
The elements of       are the inverse of the square 
root of the diagonal elements of the cov. filter

With constant “diffusion” coefficient and in the 
absence of boundaries

With spatially varying “diffusion” coefficients or in 
the presence of boundaries

IΛ λ=

( ) Nii ,...,1,diag == λΛ

Λ
2/12/1 TLWL −



Computing the normalization factors  
Define the square root of the covariance filter 

Algorithm 1 : Exact

– Let 

– Then 

– One application of the square root filter is needed for 
each grid point  i Expensive! 
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Computing the normalization factors  
Define the square root of the covariance filter 

Algorithm 2 : Randomization
(Fisher & Courtier 1995; Andersson lecture)

– Choose      such that                    and   

– Then

– The estimate of improves as       gets large.         

– Estimate of the randomization error = 
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Computing the normalization factors

CPU ~ 51 hrs for one level!

CPU ~ 10 hrs for all grid pts
Std error ~ 0.7%

CPU ~ 1hr for all grid pts
Std error ~ 2.2%



Impact of randomization on the correlations

Max error = 0.14
CI = 0.02

Max error = 0.045
CI = 0.004

Max error = 0.026
CI = 0.004



A strong constraint approach for modelling B

Recall that for the preconditioned variational problem 
we need to specify only the inverse of the change of 
variable

and its adjoint for computing the gradient of     : 

TTTT vCΣδ 2/1Kx =

∗∗ = xK δΣCv T
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T
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A flow-dependent parametrisation for
(Behringer et al. 1998 - MWR ; Alves et al. 2003 - QJRMS)

TΣ

Assume that the elements       of       are a function of 
the background vertical temperature gradient .            

Physical justification:

Errors in the temperature (T) state are expected to be 
largest in regions of strong variability; e.g., in the 
thermocline where           is large.

Assuming that the background T profile ( ) and “true” 
T profile (     ) differ because of a vertical displacement 
error       then  (cf. Cooper and Haines 1996 – JGR)
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Diagnosing      in 4D-Var
(Weaver et al. 2003 – MWR)
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(cf. EKF)
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A flow-dependent parametrisation for b
Tσ
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A strong constraint approach for modelling B

Recall that for the preconditioned variational problem, 
we need to specify only the inverse of the change of 
variable:

and its adjoint for computing the gradient of     : 

TTTT vCΣδ 2/1Kx =

∗∗ = xK δΣCv T
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A general approach for modelling B
(cf. Derber & Bouttier 1999 - Tellus) 

Suppose (to be justified shortly) 

U

B

vvSvTUB

U

B

uuSuTUB

U

B

STUB

U

B

STUB

B

vKSKTKvvv

uKSKTKuuu

SKTK

STKSSS
TT

v

u

S

′+′+′+′=′+′=′

′+′+′+′=′+′=′

′+′+′=′+′=′

′+′=′+′=′
′=′

′

′

′

′

η

η

ηηηη

η

η

ηη

η

“balanced” variables

“unbalanced” variables



A flow-dependent model for STK
(Ricci et al. 2003)

Use a local T-S relation from the background state

Water mass T-S properties are largely preserved 
in regions where isentropic processes dominate 
(e.g., in the tropical thermocline). 

For small perturbations      about  

)( bb TSS =

(Troccoli and Haines 1999 - JAOT; Troccoli et al. 2002 - JPO)
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A flow-dependent model for         cont.STK
Assume that local perturbations to the T-S relation 
arise through vertical displacements of the 
background isopycnals :

We avoid applying a T-S constraint in regions 
where nonisentropic processes are important 
(e.g., in the mixed layer) :

where             0 or 1 depending on conditions in    . 
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Impact of the multivariate T-S constraint 
in 3D-Var: a twin experiment.

T “innovation”

T analysis increment S analysis increment

S “true” increment

o



Impact of the multivariate T-S constraint 
on the salinity mean state in 3D-Var

multivariate

univariate

Levitus clim.

control (no d.a.).

• Univariate (T) case:
- Spurious circulation develops.
- Artificial decrease / increase of the

salinity in the upper / deeper ocean.
- Destruction of the salinity maximum.

• Multivariate (T-S) case:
- Realistic dynamical balances restored.
- Better conservation of water masses.
- Salinity maximum restored. 



Multivariate T-S constraint
Effect on water masses in 3D-Var

Univariate B Multivariate BControl (no d.a.)

Levitus LevitusLevitus
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Multivariate T-S constraint
Effect on salinity drift in 3D-Var

Control (no d.a.) 

Univariate B

Multivariate B Levitus clim.



Impact of the multivariate T-S constraint 
in 4D-Var: a single SSH obs experiment

Univariate B Multivariate B

“Lowering” of 
T and S profiles

“Lowering” of 
T profile



Impact of the multivariate T-S constraint 
in 4D-Var: a single SSH obs experiment

Univariate B Multivariate B

“Lifting” of 
T profile

“Lifting” of 
T and S profiles



A general approach for modelling B
(cf. Derber & Bouttier 1999 - Tellus) 

Suppose (to be justified shortly) 
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A flow-dependent model for        and   TKη SKη

Linearized equation of state :

where                        and                       . 

Dynamic height of the surface relative to            :

where        is a reference density.
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Impact of a single SSH obs in 4D-Var
Ex: SSH innovation = 10 cm at (0o,160oW) at t = 30 days.

SSH analysis increment
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a) univariate B ; b) constant in the upper 600m.b
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SSH analysis increment
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Ex:  As previous example but with: a) a multivariate B ; b) an extra 
constraint in B to enforce  ; and c) vertical T-gradient dependent            b

Tσ0=′η



A model for   ),,(),,( , ηη STvSTu KK

Hydrostatic approximation :

Combine hydrostatic and dynamic height relations :

Geostrophic (f-plane) approximation :
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Geostrophic f-plane approximation :

Geostrophic β-plane (             ) approximation :
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0 ypu ∂′∂−=′ ρβ β

)/()/1( 2
0 yxpv ∂∂′∂=′ ρβ β

yf β=

A model for                       near the equator
(cf. Burgers et al. 2002 - JPO ; Balmaseda lecture)

),,(),,( , ηη STvSTu KK



A model for                       near the equator),,(),,( , ηη STvSTu KK

Combining the f-plane and β-plane solutions
(Lagerloef et al. 1999 – JGR) :

where .   

is a length scale ~ O(eq. Rossby radius) ~ 1o - 2o.

More elaborate linear models (e.g., which include 
surface forcing, friction) could be used.

(e.g., Lagerloef et al. 1999-JGR; Bonjean & Lagerloef 2002-JPO) 
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Multivariate covariance structures

Example: covariance relative to a SSH (η) point at (0o,144oW)



Multivariate covariance structures

Example: covariance relative to a T point at (0o,156oW,168m)



Multivariate covariance structures

Example: covariance relative to a T point at (0o,156oW,168m)



Impact on the temperature mean state
(cf. Vialard et al. 2003 - MWR)

1993-96 climatology: b) – d) are the difference from the control

Assimilation data-set = in situ temperatures from the GTSPP



Mean and standard deviation of the 
analysis increments

4D-Var (s.d.)
(univariate B)
3D-Var (s.d.)
(univariate B)

4D-Var (mean)
(univariate B)

3D-Var (mean)
(univariate B)



Impact on the mean zonal velocity

1993-96 climatology

(cf. Vialard et al. 2003 - MWR)



Impact on the mean zonal velocity 
(cf. Vialard et al. 2003 - MWR)

1993-96 climatology



Impact on the mean vertical velocity

1993-96 climatology

(cf. Vialard et al. 2003 - MWR)



Concluding remarks…
Univariate data assimilation schemes tend to disrupt the 
dynamical balances along the equator and produce spurious 
circulations (Bell et al. 2003 - QJRMS; Burgers et al. 2002 - JPO;
Vialard et al. 2003 – MWR; Balmaseda lecture).

Improving the background error covariance models to 
include multivariate constraints and flow-dependent features 
is one way of restoring realistic balances in the model and 
significantly improving the analyses (cf. Burgers et al. 2002 -
JPO; Troccoli et al. 2002 – MWR; Balmaseda lecture).

General methodologies for modelling B developed in NWP 
are applicable to the ocean problem as well. (Ocean 
assimilators can exploit the wealth of experience in NWP).

However, the details differ: need for specific algorithms for 
dealing with boundaries; different balance or conservation 
relationships, different scales,…



Research issues…

* Develop techniques for the ocean for diagnosing the 
statistics of background error (ensemble methods, 
innovation-based methods). (cf. Fisher lecture)

Develop weak constraint versions of the balance operators 
(* is a prerequisite).

How do the improved covariance models benefit 4D-Var?
More comparisons between 3D-Var and 4D-Var are needed.
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