Yannick TRÉMOLET

September 2003

- 1. Introduction to Model Error in VDA.
- 2. Weak constraint 4D-Var: Theory.
- 3. Weak constraint 4D-Var: Practice.
- 4. Choice of control variable and covariance matrix.
- 5. Future directions.

Does Model Error Affect 4D-Var ?

The forecast is run with an imperfect non-linear T511 model.

The analysis is run with a linear T159 model.

imperfect model. Even if the high resolution model was perfect 4D-Var would see an

Model error is present in the IFS assimilation system.

Does it degrade the quality of the analysis ?

$(J_o)_{min}$ at the end of the minimisation (IFS \bigcirc YZ3K4).	CAL) UOLISSI		24h (1 cycle)
0.63	934998.2	1483961	
0.52	768568.0	1474381	12h (2 cycles)
0.45	676277.2	1510574	6h (4 cycles)
$(J_o)_{min}/p$	$(J_o)_{min}$	p	Assimilation window
	$1 + s_n^2$.	$E((J_o)_{min}/p) = 1 +$	$E((J_o$
	•••	Dee, 1995):	If model error is present (D. Dee, 1995):
	= 1.	$E((J_o)_{min}/p) = 1.$	E((
are verified, x_a is the)-Var hypot dition and:	Theory tells us that, if all 4D-Var hypotheses BLUE of the true initial condition and:
	Statistical Linear Estimation	l Linear H	Statistica

What is model error ?

Observation error: $y_i = \mathcal{H}(x_i^t) + \epsilon_i^o$. Assuming the true state of the atmosphere x^t is known:

Analysis error: $x_i^a = x_i^t + \epsilon_i^a$.

Forecast error: $x_i^f = x_i^t + \epsilon_i^f$ where $x_i^f = \mathcal{M}(x_{i-1}^a)$.

Model error: $x_i^t = \mathcal{M}(x_{i-1}^t) + \eta_i$.

None of these quantities can be computed.

Theoretical knowledge of the system:

Equations governing the physical state of the system:

$$\mathcal{G}(x) = 0,$$

Equations relating the state of the system to observations:

$$\mathcal{H}(x) = y.$$

Taking into account the uncertainties:

$$\mathcal{G}(x) = \varepsilon_g;$$

with error covariance matrices C_g and R.

$$y - \mathcal{H}(x) = \varepsilon_h,$$

 \sim

Variational Data Assimilation

probability distribution for x given the observations y is (from Bayes theorem): Combining the two sources of information, the a posteriori

$$P(x|y) = \alpha \exp\left(-\frac{1}{2}[y - \mathcal{H}(x)]^T R^{-1}[y - \mathcal{H}(x)] - \frac{1}{2}\mathcal{G}(x)^T C_g^{-1}\mathcal{G}(x)\right)$$

can be replaced by the problem of finding the minimum of: The problem of finding the maximum of the probability distribution

$$\begin{aligned} J(x) &= -\ln(P_a(x)) \\ &= \frac{1}{2} [y - \mathcal{H}(x)]^T R^{-1} [y - \mathcal{H}(x)] + \mathcal{G}(x)^T C_g^{-1} \mathcal{G}(x). \end{aligned}$$

Variational Data Assimilation

covariance matrix B(background x_b) is known with error ε_b and background error In meteorology, a prior estimate of the state of the system

The cost function becomes:

$$J(x) = \frac{1}{2} (x - x_b)^T B^{-1} (x - x_b) + \frac{1}{2} [y - \mathcal{H}(x)]^T R^{-1} [y - \mathcal{H}(x)] + \frac{1}{2} \mathcal{F}(x)^T C_f^{-1} \mathcal{F}(x)$$

Þ

No hypothesis has been made regarding x yet ! where \mathcal{F} represents the remaining theoretical knowledge after background information has been accounted for.

3D Variational Data Assimilation

- x is the 3D state of the atmosphere at analysis time,
- \mathcal{F} includes balance constraints,
- \mathcal{H} is a (sophisticated) 3D operator.

4D Variational Data Assimilation

- window, x is the 4D state of the atmosphere during the assimilation
- $\mathcal F$ includes equations governing the evolution of the atmosphere (model \mathcal{M}) and other constraints (DFI...),
- \mathcal{H} is a (sophisticated) 4D operator, accounting for the time dimension:
- serially correlated observations,
- observations used at correct time.

• operational implementation.

Size of the problem

Current 4D-Var operational resolution:

- Horizontal: T159,
- Vertical: 60 levels,
- Time-step: 1800s for 12 hours.

The size of the control variable is:

- Perfect model: $N = 7.7 \times 10^6$,
- Weak constraint: $(n+1) \times N = 1.9 \times 10^8$

and occupy 131,331 Tb of memory. The model error covariance matrix would have 1.9×10^{16} elements

Sources of information

- 3×10^{6} observations are available each day to estimate 1.9×10^{16} elements of Q.
- gather as many observations as there are parameters in Q. At today's rate of observation it would take 6 billion years to
- Assuming there is no redundancy in observed quantities and model error can be separated from other sources of error...
- There is not enough information to solve the problem:

Approximations are required !!!

Model Error and Model Bias

- 4D-Var is bias blind: it assumes errors are unbiased or that biases have been removed.
- Biases for each of the errors considered:

$$\begin{split} \beta_b &= \langle x^t - x_b \rangle \ , \ \varepsilon_b = (x^t - x_b) - \beta_b \ \text{and} \ B &= \langle \varepsilon_b^T \varepsilon_b \rangle, \\ \beta_o &= \langle y^t - \mathcal{H}(x^t) \rangle \ , \ \varepsilon_o = (y^t - \mathcal{H}(x^t)) - \beta_o \ \text{and} \ R &= \langle \varepsilon_o^T \varepsilon_o \rangle, \\ \beta_f &= \langle \mathcal{F}(x^t) \rangle \ , \ \varepsilon_f = \mathcal{F}(x^t) - \beta_f \ \text{and} \ Q &= \langle \varepsilon_f^T \varepsilon_f \rangle. \end{split}$$

Unbiased variables are noted with $\widetilde{(\cdot)}$: $\tilde{x_b} = x_b - \beta_b$.

Bias Example

- Scalar z to be estimated from a and b (with $\sigma_a = \sigma_b = 1.0$),
- Cost function: $J(z) = (z a)^2 + (z b)^2$,
- Minimum is reached for z = (a + b)/2.
- If a and b are biased, the actual cost function should be:

$$J(z) = (z - \tilde{a})^2 + (z - \tilde{b})^2$$

- Minimum reach for $z = (\tilde{a} + \tilde{b})/2$.
- Biases do affect the final estimate.

$$J_{min} = (a - b)^2 / 2 \text{ or } J_{min} = (\tilde{a} - \tilde{b})^2 / 2.$$

Model Error and Model Bias

- Biases are the mathematical expectation of the errors, or an ensemble average of the errors, not a time average
- bias or model bias. The time averaged error is sometimes (abusively) called *forecast*
- expectation terms (ie in the realisations dimension). Time averaged error is usually non-zero. It can be unbiased in

What can really be done ? Weak constraint 4D-Var: Practice

- 1. Choice of model error control variable,
- 2. Model error statistics,
- 3. Using model error.

Characteristics of model error

- Some components are constant (orography),
- Some components are almost periodic (diurnal cycle),
- Some components are flow dependent (physical processes),
- Model error is correlated in time (in addition to growth),
- Discretisation and numerical errors may be more random,
- In incremental 4D-Var context, model error is the sum of:
- Error between the atmosphere and HR NL model,
- Error between inner and outer loop: HR NL model vs. LR TL model with limited physics.

Representing Model Error

1. Constant forcing $\eta_i = \eta$,

2. Markov chain:
$$\eta_i = \frac{\mu}{\mu + (1 - \mu^2)^{1/2}} \eta_{i-1} + \frac{(1 - \mu^2)^{1/2}}{\mu + (1 - \mu^2)^{1/2}} r_k$$
 (Zupanski),

- 3. Fourier series expansion (Diurnal cycle),
- 4. Spin-up/down term (vanishing term).

Yannick Trémolet

x_0 η_i $x_i = \mathcal{M}(x_{i-1}) + \eta_i$ \Downarrow Weak constraint 4D-Var	The 4D control variable $\{x_i, i = 0,, n\}$ can be replaced by:	
x_0 $\eta_i = \eta$ $x_i = \mathcal{M}(x_{i-1}) + \eta$ \downarrow Practical Implementation	ble $\{x_i, i=0,\ldots,n\}$	Choice of control variable
x_0 $\eta_i = 0$ $x_i = \mathcal{M}(x_{i-1})$ \downarrow 4D-Var	{ can be replaced	ariable
$egin{array}{c} x_0 \ \eta_i = 0 \ x_i = x_0 \ \psi \ 3 D-Var \end{array}$	by:	

Model Error Covariance Matrix

- Define statistics for model error from the model's implementation (numerics and physics),
- Based on B matrix (Zupanski),
- Statistics on innovation and residual (Daley): Method based on KF and not (easily) applicable to 4D-Var,
- Ensemble of slow modes (Phillips, Cohn and Parrish),
- Online estimation $Q(\alpha)$ (Dee),
- Statistics on A and B, using $B = MAM^T + Q$,
- Comparison between LR linear runs and HR nonlinear runs.

$$Q = \alpha B$$

- Cost per iteration:
- Double the size of the control vector,
- Double cost of linear algebra (at most, cost in $\beta + n\tau$),
- cost),Add forcing in linear model and adjoint (negligible additional
- Overall, cost of linear algebra is negligible.
- Number of iterations:
- Fixed number of iterations in first minimisation,
- Depends on conditioning in following minimisations,
- Efficient preconditioning: Lanczos algorithm (M. Fisher).

·)))	2007.1	Second minimisation
10996.7	6575.9	First minimisation
it Weak constraint	Strong contraint	
r 1159 minimisation 28 CPUs	lapsed time and memory for T159 m with the IFS on IBM SP, 128 CPUs	Measured elapsed time and memory for with the IFS on IBM SP, 12
	703 Mb	Memory
91.9 sec	89.2 sec	SIM4D
4.9 ms	$3.3 \mathrm{ms}$	Dot product
Weak constraint	Strong contraint	Elapsed time S

$$= \mathcal{M}_i \left(\mathcal{M}_{i-1} \left(\dots \left(\mathcal{M}_1(x_0) + \eta_1 \right) \dots \right) + \eta_{i-1} \right) + \eta_i$$

$$x_i = x_i^m + \sum_{j=1}^i M_i \dots M_{j+1} \eta_j$$

where $x_i^m = \mathcal{M}_i(\ldots(\mathcal{M}_1(x_0))\ldots)$ is the perfect model forecast.

- Early components dominate the resulting impact of model error.
- Constant model error is influenced mostly by early errors.

- The choices of control vector $x = (x_i)_{i=0,...,n}$, $\chi = (x_0, (\eta_i)_{i=1,...,n}) \text{ or } \chi' = (x_0, (\beta_i)_{i=1,...,n}) \text{ are equivalent.}$
- The approximations $\eta_i = \eta$ and $\beta_i = \beta$ are not.

Control of Model Bias

• Controlling model bias means:

$$x_i - x_i^m = \beta$$

- the cost function. All the time components of model error have equal influence on
- *bias* for some authors. It is a good representation of the time averaged error. This is the
- Coded in the IFS with extra features.

Propagation of Error Covariance Matrix

Taking the difference leads to: We have $x_{i+1} = \mathcal{M}(x_i^a)$ and $x_{i+1}^t = \mathcal{M}(x_i^t) + \eta_i$.

$$\epsilon_{i+1}^f = \mathcal{M}(x_i^a) - \mathcal{M}(x_i^a - \epsilon_i^a) - \eta_i$$

A first order approximation gives $\epsilon_{i+1}^{t} = M \epsilon_{i}^{a} - \eta_{i}$.

If analysis error and model error are uncorrelated (?):

$$E(\epsilon_{i+1}^f(\epsilon_{i+1}^f)^T) = E(M\epsilon_i^a(M\epsilon_i^a)^T) + E(\eta_i\eta_i^T)$$

which is:

$$P^f = M P^a M^T + \zeta$$

frequent access to good data (supported by HL86-LH86) Phillips (86) hypothesis: P^{f} is dominated by Q if analysis has

Model Error Covariance Matrix

- Cohn and Parrish (91) based on Phillips (86),
- Model error consists of uncorrelated slow modes:

$$Q = V_s S V_s^*$$

and S is diagonal.

- Energy spectrum is known: the elements of S depend on a few (one) parameters.
- Forecast error covariance matches results from Hollingsworth and Lönnberg (86) and LH86

Estimation of error covariance parameters
Can be done online (Dee).

$$Q$$
 is parameterised by α .
Expectation of innovation vector $v = y - Hx$ is:
 $E(vv^T) = E(\epsilon^o(\epsilon^o)^T) + E(H\epsilon^f(H\epsilon^f)^T) - E(\epsilon^o(H\epsilon^f)^T) - E(H\epsilon^f(\epsilon^o)^T).$
If correlation between observation and forecast error can be neglected:
 $E(vv^T) = HP^f H^T + R.$
Remember that $P^f = MP^a M^T + Q$,

 $E(vv^T) = H(MP^a M^T + Q(\alpha))H^T + R = S(\alpha).$

Estimation of error covariance parameters

$$E(vv^{T}) = H(MP^{a}M^{T} + Q(\alpha))H^{T} + R = S(\alpha)$$

Maximum likelihood value for α is obtained for:

$$\alpha^{ML} = \arg\min_{\alpha} (\log \det S(\alpha) + v^T S^{-1}(\alpha)v)$$

and
$$\frac{\partial f}{\partial \alpha_i} = \operatorname{Trace} \left[(S^{-1} - S^{-1} v v^T S^{-1}) \frac{\partial S}{\partial \alpha_i} \right].$$

Lanczos method (Fisher).

Problem can be simplified: if $S = \alpha S_0$ then $\alpha^{ML} = \frac{1}{p} v^T S_0^{-1} v$. Simple expression of $S(\alpha)$?

Using model error

- Model error is valuable information which can be used in the forecast integration,
- shown good results (Saha, Thiébaux and Morone), Add a forcing term in the forecast model: Empirical tests have
- Model bias can be added at post-processing stage.
- Model error might help identify model deficiencies.
- Model error term can be used in sensitivity computations.

Future developements in the IFS

Start by weak constraint 4D-Var with:

- Control variable: constant forcing or bias,
- Covariance matrix: αB .

Future developments:

- Cycling, archiving, verification.
- Q based on slow modes.
- Online estimation of parameters of Q.
- Model error variable in time.
- correlated with background. Cross correlations: model error is state dependent and should be

