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1. Introduction to Model Error in VDA.
2. Weak constraint 4D-Var: Theory.
Weak constraint 4D-Var: Practice.

Choice of control variable and covariance matrix.

A

Future directions.
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Model Error in Variational Data Assimilation

Model Error in Data Assimilation

e Sequential methods, Kalman Filter (Dee, DAO),
e Ensemble KF (Houtemaker, Evensen),

e 4D-PSAS (Oceanography),

e Representers method (Bennett),

e Weak constraint 4D-Var.
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Model Error in Variational Data Assimilation

Does Model Error Affect 4D-Var ?

The forecast is run with an imperfect non-linear T511 model.
The analysis is run with a linear T159 model.

Even if the high resolution model was perfect 4D-Var would see an

imperfect model.
Model error is present in the IFS assimilation system.

Does it degrade the quality of the analysis 7
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Model Error in Variational Data Assimilation

Statistical Linear Estimation

Theory tells us that, if all 4D-Var hypotheses are verified, z, is the
BLUE of the true initial condition and:

E((Jo)min/p) = 1.

If model error is present (D. Dee, 1995):

E((Jo)min/p) =1+ mw

Assimilation window D (Jo)min | (Jo)min/P
6h (4 cycles) 1510574 | 676277.2 0.45
12h (2 cycles) 1474381 | 768568.0 0.52
24h (1 cycle) 1483961 | 934998.2 0.63

(Jo)min at the end of the minimisation (IFS CY23R4).
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Model Error in Variational Data Assimilation

What is model error ?

Assuming the true state of the atmosphere z! is known:
Observation error: y; = H(x}) + 9.

Analysis error: z¢ = z! + €.

Forecast error: z/ = z! 4+ ¢ where 2/ = M(z% ).
Model error: zt = Mz )+ n;.

None of these quantities can be computed.
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Model Error in Variational Data Assimilation

Variational Data Assimilation

Theoretical knowledge of the system:

e Equations governing the physical state of the system:

G(x) =0,

H(x) =y.
Taking into account the uncertainties:

G(xr) = &g,
y — H(z)

Eh;

with error covariance matrices Qm and R.

e Equations relating the state of the system to observations:
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Model Error in Variational Data Assimilation

theorem):

J(x)

Variational Data Assimilation

Combining the two sources of information, the a posterior:

probability distribution for x given the observations y is (from Bayes

1
2

Plaly) = aexp (4 ly - H@IT Ry~ H(a)] - 30()7C, ()

The problem of finding the maximum of the probability distribution
can be replaced by the problem of finding the minimum of:

—In(P,(x))

Sy~ M) Ry~ H@)] + () O G ().
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Model Error in Variational Data Assimilation

Variational Data Assimilation

In meteorology, a prior estimate of the state of the system
(background zy) is known with error £, and background error

covariance matrix B.

The cost function becomes:

J@) = Se—m) B (e —m) + Sy~ H) Ry~ H()

1
+ mﬁ@q@ﬂﬁi
where F represents the remaining theoretical knowledge after
background information has been accounted for.
No hypothesis has been made regarding = yet !

Same formulation as Sasaki, 1970.
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Model Error in Variational Data Assimilation

3D Variational Data Assimilation

e 1 is the 3D state of the atmosphere at analysis time,
e F includes balance constraints,

e 7 is a (sophisticated) 3D operator.
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Model Error in Variational Data Assimilation

4D Variational Data Assimilation

e r is the 4D state of the atmosphere during the assimilation

window,

e F includes equations governing the evolution of the atmosphere
(model M) and other constraints (DFTI...),

e 7 is a (sophisticated) 4D operator, accounting for the time
dimension:
— serially correlated observations,

— observations used at correct time.
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Model Error in Variational Data Assimilation

Strong constraint 4D-Var

e Model is perfect,

e 1 is a function only of the initial condition x( (the size of the

control variable is reduced):
r; = \S%aTL — \So,%&oy
e constraints associated to the model disappear from F (no model
error covariance matrix),
e 7{ is the same 4D operator,

e operational implementation.
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Model Error in Variational Data Assimilation

Weak constraint 4D-Var

The model is not perfect,
x is a 4D control vector,

Model error verifies:
ni = x; — Mi(zi—1) = Fi(z;),

Model error covariance matrix () has to be defined,

Choices of control vector x = (x;);=0,... n and

X = A&ov Assvsnpzv are equivalent.
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Model Error in Variational Data Assimilation

Weak constraint 4D-Var

Linear evolution of perturbations:

ox; = M;ow;—1 + 0n; = My ;070 + MU M;,i0m;

j=1
Variation of the total cost function:
§J(xo,m) = OdxiB H(xo—xp) + 0z MiWomﬂm d;
=1
+Mu§q Muie HYR7'di+> ) onf Q5 pmk
. j=1k=1

o %|%_ is obtained by accumulating contributions from the adjoint
J

at steps 1 = 7, .
e The gradient of the cost function is still obtained by one

backward integration of the adjoint.
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Model Error in Variational Data Assimilation

Size of the problem

Current 4D-Var operational resolution:
e Horizontal: T159,
e Vertical: 60 levels,
e Time-step: 1800s for 12 hours.
The size of the control variable is:
e Perfect model: N = 7.7 x 109,
e Weak constraint: (n +1) x N = 1.9 x 105,

The model error covariance matrix would have 1.9 x 101° elements
and occupy 131,331 Tb of memory.
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Model Error in Variational Data Assimilation

Sources of information

e 3 x 109 observations are available each day to estimate 1.9 x 101¢

elements of ().

e At today’s rate of observation it would take 6 billion years to

gather as many observations as there are parameters in ().

e Assuming there is no redundancy in observed quantities and
model error can be separated from other sources of error...

e There is not enough information to solve the problem:

Approximations are required !!!
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Model Error in Variational Data Assimilation

Model Error and Model Bias

e 4D-Var 1s bias blind: 1t assumes errors are unbiased or that biases

have been removed.

e Biases for each of the errors considered:
By =<zt —xp> , ep = A&#I&@VI@V and B =< mwm@ >,

Bo =<y'—H(z") > , e, = (y' =H(z"))=f, and R=<e,e, >,

B =<F(z')> , ey =F(2') — By and Q =<ceres>.

e Unbiased variables are noted with (.): @, = xp — Sb.
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Model Error in Variational Data Assimilation

1

2
1 -~

2

J(x) =

I_I

J(x) = =(x—a)'B e —1) +

+ —F(z)

Model Error and Model Bias

e The variational data assimilation cost function should be:

15— A)] R~ Ale)

TQ ' F(x).

e 4D-Var is in fact minimising:

w@. — Ty + B) B~ (x — & + Bb)

() + Bo]" R — H(z) + o]

F(z) + 81T Q7 HF (2) + By]

N — DN = D

e The analysis is biased.
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Model Error

in Variational Data Assimilation

Bias Example

Scalar z to be estimated from a and b (with o, = o3, = 1.0),
Cost function: J(2) = (2 —a)? + (z — b)?,
Minimum is reached for z = (a + b) /2.

If a and b are biased, the actual cost function should be:
J(z) = (z —a)? + (= — b)?

Minimum reach for z = (& + b)/2.

Biases do affect the final estimate.

Jmin = (a —b)?/2 or Jpnin = (@ — b)?/2.
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Model Error in Variational Data Assimilation

Model Error and Model Bias

e Biases are the mathematical expectation of the errors, or an

ensemble average of the errors, not a time average.

e The time averaged error is sometimes (abusively) called forecast

bias or model bias.

e Time averaged error is usually non-zero. It can be unbiased in

expectation terms (ie in the realisations dimension).
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Model Error in Variational Data Assimilation

Weak constraint 4D-Var: Practice

What can really be done 7
1. Choice of model error control variable,
2. Model error statistics,

3. Using model error.
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Model Error in Variational Data Assimilation

Characteristics of model error

e Some components are constant (orography),

e Some components are almost periodic (diurnal cycle),

e Some components are flow dependent (physical processes),
e Model error is correlated in time (in addition to growth),
e Discretisation and numerical errors may be more random,

e In incremental 4D-Var context, model error is the sum of:

Error between the atmosphere and HR NL model,

Error between inner and outer loop: HR NL model vs. LR TL
model with limited physics.
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Model Error in Variational Data Assimilation

Inner Loop Approximations

Temperature Humidity
1 1 , ] , , 1 , T ,
10+ 4 10 4 10 .
20+ 4 20 4 20 ¢ .
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Evolution of the relative error in the T159 tangent linear model with

respect to the T511 forecast model over the assimilation window.
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Model Error in Variational Data Assimilation

Representing Model Error

1. Constant forcing n; = 7,

. 1—,2)1/2
2. Markov chain: n; = t+ﬁ|t:wviw Ni—1 + t%ﬁmtwviw Tk

3. Fourier series expansion (Diurnal cycle),

4. Spin-up/down term (vanishing term).

(Zupanski),
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Model Error in Variational Data Assimilation

Lo
Ui

r; = M(x;—1) +n;
4

Weak constraint
4D-Var

Choice of control variable

Lo
i =1
ri = M(xi—1) +n
4

Practical

Implementation

Lo

N =
r; — .>\~A&s.lpv

4D-Var

The 4D control variable {z;, ¢ =0,...,n} can be replaced by:
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Model Error in Variational Data Assimilation

Model Error Covariance Matrix

e Define statistics for model error from the model’s implementation

(numerics and physics),
e Based on B matrix (Zupanski),

e Statistics on innovation and residual (Daley): Method based on
KF and not (easily) applicable to 4D-Var,

e Ensemble of slow modes (Phillips, Cohn and Parrish),
e Online estimation Q(«a) (Dee),
e Statistics on A and B, using B = MAM?*' + Q,

e Comparison between LR linear runs and HR nonlinear runs.

Q =aBb
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Model Error in Variational Data Assimilation

e Cost per iteration:

cost),

Computational cost

— Double the size of the control vector,
— Double cost of linear algebra (at most, cost in 3 + n7),

— Add forcing in linear model and adjoint (negligible additional

— Overall, cost of linear algebra is negligible.

e Number of iterations:
— Fixed number of iterations in first minimisation,
— Depends on conditioning in following minimisations,

— Efficient preconditioning: Lanczos algorithm (M. Fisher).
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Model Error in Variational Data Assimilation

Computational cost (measured)

Elapsed time | Strong contraint

Weak constraint

Dot product 3.3 ms 4.9 ms
SIM4D 89.2 sec 91.9 sec
Memory 703 Mb 769 Mb

Measured elapsed time and memory for T159 minimisation
with the IFS on IBM SP, 128 CPUs

Strong contraint

Weak constraint

First minimisation

Second minimisation

6575.9
2007.1

10996.7
1302.0

Measured condition number in IFS (CY26R3)
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Preliminary results

Model Error (Constant Forcing), @Q = 107! B, Surface Pressure

7.206
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Preliminary results

Impact on Initial Condition, Q@ = 10~ !B, Surface Pressure
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Model Error in Variational Data Assimilation

Model Error Evolution

e Knowing xg and 1, z; can be computed:

r; = M;(zi—1)+n;
= M;(M;_1 (... Mi(zo) +m1)...) +1i—1) + 1

e If model errors are small enough, M, can be linearised:
X, — &M; +MN§&...N§Q+HQ§.
j=1

where " = M; (... (M1(xg))...) is the perfect model forecast.

e Constant model error is influenced mostly by early errors.

e Early components dominate the resulting impact of model error.
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Model Error in Variational Data Assimilation

Impact of Forcing

Time steps

e Accumulated impact of early forcing in forecast is larger,

e It dominates in the cost function.
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Model Error in Variational Data Assimilation

Incremental 4D-Var

e Incremental formulation gives:

r; = M; (M;—1 (..  Ma(xp +0x0) +11)-..) +10iz1) + 1

e [.inearisation leads to:

1=1

e 0x( can be identified with 7.

e Because () and B are proportional, dxy and n are constrained in

the same directions, with relative amplitudes controlled by «.

e They both predominantly retrieve the same information.
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Model Error in Variational Data Assimilation

Lo

n; or [3;
r; = .\/AA&&IHV |_|§
z; = Mo,i(xo)+ 0
U

Weak constraint
4D-Var

or

Lo

i =1

r; = M(zi—1) +1

Y

Constant

Forcing

Another choice of control variable

Lo
B; =0
r; = Mo,i(zo) + B

)

Bias

e The choices of control vector x = (x;)i=0.....n,

X = (@0, (Mi)i=1,...,n) or X' = (2o, (Bi)i=1,...,n) are equivalent.

e The approximations n; = n and 3; = (3 are not.
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Model Error in Variational Data Assimilation

Control of Model Bias

e Controlling model bias means:
T, —x, =
e All the time components of model error have equal influence on
the cost function.

e It is a good representation of the time averaged error. This is the

bias for some authors.

e Coded in the IFS with extra features.
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Model Error in Variational Data Assimilation

Propagation of Error Covariance Matrix

We have ;11 = M(z) and z},; = M(z}) + ;.

(/

Taking the difference leads to:
el = M(af) = M(xf — ) — s

A first order approximation gives mw 1= Mej —n;.
If analysis error and model error are uncorrelated (7):
B(elya(e)") = B(Me} (Me))T) + B,
which is:
Pl =MP*MT + Q.

Phillips (86) hypothesis: P/ is dominated by @ if analysis has
frequent access to good data (supported by HL86-LH86).
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Model Error in Variational Data Assimilation

Model Error Covariance Matrix

Cohn and Parrish (91) based on Phillips (86),

Model error consists of uncorrelated slow modes:
Q= VSV
and S is diagonal.

Energy spectrum is known: the elements of S depend on a few

(one) parameters.

Forecast error covariance matches results from Hollingsworth and
Lonnberg (86) and LHS6.
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Model Error in Variational Data Assimilation

Estimation of error covariance parameters

Can be done online (Dee).
() is parameterised by a.

Expectation of innovation vector v =y — Hx is:

E(wvT) = E(e?(e2)T)+E(He (HNT)—E(e*(HeNHT) - E(He (2)T).
If correlation between observation and forecast error can be neglected:
E(wwT)=HP'HT + R.

Remember that P/ = MP*M7T + (),

E(vw') = HMP*M* + Q(a))H" + R = S(a).
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Model Error in Variational Data Assimilation

Estimation of error covariance parameters
E(vw") = HMP*M" + Q(a))H" + R = S(a)
Maximum likelihood value for « is obtained for:

o™ = argmin(log det S(a) + v* S~ (a)v)

0S

o |

of
@O&

Lanczos method (Fisher).

and = Trace [(S7! — S ot §71)

Simple expression of S(«) ?

Problem can be simplified: if S = aSy then oML = we%%%;.
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Model Error in Variational Data Assimilation

Using model error

e Model error is valuable information which can be used in the

forecast integration,

e Add a forcing term in the forecast model: Empirical tests have

shown good results (Saha, Thiébaux and Morone),
e Model bias can be added at post-processing stage.
e Model error might help identify model deficiencies,

e Model error term can be used in sensitivity computations.
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Future developements in the IFS

Start by weak constraint 4D-Var with:
e Control variable: constant forcing or bias,
e (Covariance matrix: abB.
Future developments:
e Cycling, archiving, verification.
e () based on slow modes.
e Online estimation of parameters of ().
e Model error variable in time.

e Cross correlations: model error is state dependent and should be

correlated with background.
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