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Adaptive observations for NWP

e place additional in situ obs. in sensitive regions in order to constrain forece

error (range/region).
Atlantic: FASTEX (1997), TOST (2003)
Pacificc. NORPEX (1998), WSRP 99, 00,...03

Several objective techniques have been developed that hold promise of identify
optimal sitedor additional observations.

e How optimal are theptimal sitegeally?
Proper test with real obs is outstanding as it requires a large number of additio
targeted and un-targeted obs, and a large number of cases.

Perhaps in THORPEX?

e a more general goal for adaptive observation techniques:

Prediction of how forecast uncertainty changes due to intermittent modifi-
cations of the observing network.

Change of uncertainty predictions can be verified with OSEs in a similar way as the predic-
tions of ensemble spread can be verified.

ensemble fc adaptive obs
spread-skill relationship (change of fc uncertainjy (change of skil) relationship




Ensemble Transform Kalman filter

e Ensemble Transformation: Bishop and Toth (1999)
e Ensemble Transform KF (ETKF): Bishop, Etherton and Majumdar (2001)

e Prediction of the reduction of forecast error variance: Majumdar et al. (2001)
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signak= fc(routine + adaptive obs:) fc(routine obs.)
y-axis: (sample mean over many) realizations using 3D-Var assimilation
x-axis: variance prediction assuming ETKF assimilation.

— towards consistency between targeting and data assimilation?



Techniques to predict changes of fc uncertainty due to the assimilation
of additional observations

ingredients: statistics of initial condition errors,
of how they change due to an assimilation of additonal obs.,
perturbation dynamics from the obs. time to the verification time.

dynamics: ensembles- tangent-linear/adjoint techniques

data assimilation: Gaussian statistics

Kalman filter

pert. obssqgrt-type (ETKF)

consistency issuetargeting method- operational assimilation scheme



Adjoint-based methods to predict sensitive regions

Prediction of sensitive regions of the atmosphere using

e adjoint sensitivity with respect to the ICs, Rabier et al. (1996), Langland et &
(1996), Gelaro et al. (1998)

e total energy singular vectors: Buizza and Montani (1999), Gelaro et al. (199

e Hessian singular vectors: Leutbecher et al. (2002)

e TE-metric inconsistent with structure functions used in data assimilation, e\
dence from Cardinali and Buizza (2003).
Diagnostic of targeting based on total energy SVs: On average, small projection of analy
differences (due to additional obs) on singular vectors, whereas forecast errors have a large
jection on SV subspace. What would the same diagnostic yield for Hessian SVs?

But: How many obs? Which error characteristics? What spacing are required
sensitive region to effectively constrain fc error?



Adjoint-based methods to predict forecast error variance reductions

e Assimilation of additional obs. is accounted for.

e Techniques are consistent with the variance estimates of the underlying val
tional assimilation schemes.

e prediction of fc error variance reduction due to additional obs in the directio
of an adjoint sensitivity: Kalman filter sensitity(Bergot and Doerenbecher
2002)

The Kalman filter sensitivity is closely related to the sensitivity with respect to observatior
(Baker and Daley 2000; Doerenbecher and Bergot 2001)

e prediction of fc error variance reduction in a SV subspatessian reduced
rank estimatéLeutbecher 2003)

e Both techniques can be seen as reduced rank approximations of Extended Kall
filter predictions of forecast error variance reductions, where the KF is initialize
with the staticB of the variational assimilation scheme.



Outline

e evaluation of predictions of forecast error variance reductions in a simp
model

— Kalman filter
— Kalman filter - reduced rank estimate
— OI/3D-Var - reduced rank estimate

e the Hessian reduced rank estimate in an (almost) operational 4D-Var confic
ration

e limitations/ future directions



Planet L95

Atlantic #5




“Weather” on Planet L95

dx
gr = Xt XXX+ F
withi = 1,2...40,

Xo=X40, X-1=2X39, X41=2X1
andF =8

(Lorenz, 1995, ECMWF Sem. on Predictability
and Lorenz and Emanuel, 1998)

e time unit of 1 corresponds to 5 days

e chaotic system: 13 positive Lyapunov ex-
ponents, the largest corresponds to a dou-
bling time of 2.1 d




“Weather” on Planet L95

e variables fluctuate about mean in
a non-periodic manner with a cli-
matological standard deviation of
Oclim = 3.6

e perturbation of initial conditions
grows with time and its leading
edge propagates “eastward” at &
speed of about 25 degrees/day

e homogeneous dynamics (invariant
under transformation— i+ 1

e system of ODEs integrated with 4th
order Runge-Kuttat = 3h

LORENZ AND EMANUEL (1998)
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Fig. 3. Longitudinal profiles of X, as in Fig. 2, but at 2-day intervals, with the initial profile
of Fig. 2, and with a second set of profiles superposed. The superposed initial profile is formed
by adding 4.0 units to X,;. Where the second profile lies above the original one, the area between
the profiles is shaded.



Previous studies of adaptive observing strategies

e Lorenz and Emanuel, 1998: obs assimilated with direct insertion; best strate
based on estimate of largest first guess error.

e Berliner et al., 1999: Extended Kalman filter assimilation and targeting aj
proach (no statistical verification, only 4 cases discus$g@). = F

e Hansen and Smith, 2000: Direct insertion/ Ensemble KF assimildigpe =
0.95F

“For analysis errors of sufficiently small magnitude, dynamically based
selection schemes will outperform those based only upon uncer-
tainty estimates; it is in this limit that singular vector-based adap-
tive observation strategies will be productive.”



Routine observations used for NWP on Planet L95
e observations every 6 hours, unbiased normally distributed error
e over land (positions 21-40): obs. at every locatimg= 0.050¢|im

e over ocean (positions 1-20p, = 0.150m, at “cloud-free locations”. Clouds
depend deterministically or but in such a way that the space-time pattern
looks like a random process. The probability for occurence of cloud is 0.7.
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NWP Centres on L95

e EMO: European Meteorological Office, Extended Kalman filter
e MC: Meteo-China, Optimum-Interpolatica 3D-Var
e EMO and MC have very good (perfect) nonlinear forecast models.

e EMO and MC are interested in adaptive observations in order to improve ftl
fc for Europe(Lg,) at a range of up to 5 days. They both employ targeting
schemes that use initial error statistics consistent with their respective assi
lation schemes.

e Recently, they had a major experimede¢ondHemisphericAdaptive ob-
serving, Predictabilityd ntercomparison an&esearchExperiment) in which
additional observations had been taken every day over a 1000 day perioc
every ocean point witlo, = 0.050im. Routinely, both plan to implement an
operational targeting scheme in which a targeted observation will be taken
one ocean site.

e EMO and MC have evaluated their targeting schemes using the data from th
1000 day observing experiment.



2-day fc errors for Europe (EMO)

fc range 2 days (A04)
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e assim. with KF using routine obs.

e sample of 1000 daily forecasts
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mean sgquared error

(Co)variance prediction with the Kalman filter (routine obs)

fc range 2 days (A04)
bins of 50 forecasts
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Identifying the optimal position for an additional observation

ofvation: truth + noise [ ) _
A control analysis
"""""""""""" Fpm=smmmmmmmce- truth run

o
assimilation
@ of routine obs.
assim. of routine+
background additional obs.
L
Routine observations Routine obs +additional obs. at position
analysis step at timeg: analysis step at timeg:

_ — — -1 _ _
(PO = (PN HHIR M, (P 1= (P)) T+ HIR M+ HIRMH,
long forecast; — tj.,: long forecast; — tj.,:

Pl =MPaMT P'=MP*MT,  foralli=1,...20

Optimal position,: select that gives maximum reduction of fc error variance.

f
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Verification of the predictions of forecast error variance reductions due
to additional observations (Kalman filter)

fc range 2 days (A04)
bins of 50 forecasts
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Verification of the predictions of forecast error variance reductions due
to additional observations (Kalman filter)

fc range 2 days (A04)
bins of 250 forecasts
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Approximations to the Kalman filter approach

1. At EMO: fc error covariance estimate

MP2MT
reduced rank: evolve covariances only in a subspace

2. At MC: static background error covariances {08D-Var ~ 4D-Var with obs.
at beginning of assim. window)

replace(P?) " = (P\) "+ HTRH
by A~ =B-14+HTR-IH



Reduced rank estimate of forecast error variance

e Compute variance of forecast errors only in a subspace of leading singular
vectors. R .
tracg M, Le,P'LE M) instead of tracd g PTLL,)

e Here, M, denotes the projection on the subspace of the lead{feft) singular
vectors ofL g M.

e The inverse of the routine analysis error covariance man;?y—l IS an

appropriate choice for the initial time metric because the SVs computed with thi
metric evolve into the leading eigenvectors of the routine forecast error covariar
matrix tracéL g P LL).

e Notation: matrix containing the leadinginitial SVs as column vectors



Variance reductions in the singular vector subspace

e Representation of analysis error covariances in the subspace spanned by the |
ing ninitial SVs:
routine network: V.V, where VAN(= VA
modified network™:  V,FiFTVT, where(V,[)T (P3) 1 (Vali) =1

T) involves approximatindg? by a block-diagonal matrix in the space in which
P2 is the identity.

e the transformation matrik; is an inverse square root of timex n matrix C; =
VI (P8 'V, = I, +VIHTR H;V,. Matrix C; expresses the modified analysis
error covariance metric in the basis of the singular vectors.

e forecast error variance:

N T n . o? routine network
traceg M Le PILEM ) = {zll J

tracel "diag(o?,...,02)I) modified network

whereo; denotes the singular value SW.



A rank-1 example

leading 2—day singular vector
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2-day optimization period, projection
operator for “Europe” (positions 21-28).

The modified analysis error covariance
metric evaluated in the direction of the
leading SV

G =vi (PY) vy = 1+\2(i) /0,2

e The predicted forecast error variance for an
additional observation atis 63/C;.

e An observation at position 15 would result
in a halfing of the 2-day forecast error
variance in the direction of the leading
evolved SV.



Evaluation of the KF rank-1 predictions of forecast error variance
reductions due to additional observations

fc range 2 days (ROS8)
bins of 50 forecasts
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Approximation of the background error covariances

Replace the routine background error covariance m&friw a static background
error covariance matrig (Ol at MC)

e in the variance prediction (targeting) and

e in the assimilation algorithm.

MC has themagicB: The static background error covariance matrix is a sampl
covariance matrix computed from forecastruth differences.
Several iterations of updatir®= ((x" —x")(x" —x!)T) over the 1000 day sample.

KF versus Ol performance, global rms errors

range (d) O 1 2 3 4 5

KF 0.11 0.17 0.25 0.38 0.57 0.80
Ol 0.33 0.49 0.74 1.04 1.38 1.74
Oclim = 3.6, Ogjand= 0.18, 0 gcean= 0.54




Verification of 2-day forecast error variance reductions: Ol-rank 1

fc range 2 days (RO7)
bins of 250 forecasts
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Verification of 4-day forecast error variance reductions: KF-rank 1

fc range 4 days (R0O8)
bins of 250 forecasts

reduction of mean square error
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Distribution of the optimal position (Ol-rank 1) for an additional obs in
the Atlantic to improve the 2-day fc over Europe

fcrange 2 days (RO7)
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Distribution of the optimal position for an additional obs in the Atlantic
to improve the 2-day fc over Europe (KF full rank)

fcrange 2 days (A04)
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Reduction of 2-day forecast error over Europe due to additional
observation at positioni (KF)

fcrange 2 days, 1000 day sample (A04)
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Distribution of 2-day forecast errors: KF-full rank versus KF-rank 1

fc range 2 days (A04/R08)
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Distribution of 2-day fc errors over Europe (Ol-rank 1)

fcrange 2 days (R07)
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e prediction of forecast
error variance reductions
due to additional
observations

e rank reduction using a
subspace of Hessian
singular vectors using the
routine observations inJ,

e initial error estimates

are consistent with the
covariance estimates of an
(almost) operational
variational data
assimilation scheme (6 h
4D-Var, T42 inner loop

only)



00J

The Hessian
aXian

Ludwig Otto Hesse
(1811-1874, Knigsberg, Heidelberg, Nthchen)

1

e Variational data assimilation, incremental formulation, “inner loop”

J(X) = %XTB_lx + %(Hx —d)"R}(Hx —d),
wherex denotes the departure from a background statedahd departure of the
observed values from the background interpolated to observation locations.
e Currently, the background error covarian&are estimated from an ensemble
of analyses.
e An estimate of the analysis error covariances is obtained bii#ssian

00J=B'+H'RH



A reduced rank estimate of forecast error variance reductions based on
the Hessian

Similar to KF/Ol-reduced rank estimates but uses an analysis error covariance
estimates based on the Hessian.

e subspace: Hessian singular vectgrsomputed with the metriCllJ outine
based on (an estimate of ) the routine observing network

e efficient computation of the analysis error covariance metricrfodified obs.
network(routine+ additiona) in the subspace:

GCij = V{ 00JmoaVj = Vi (D0Jouine+HIRZ™Ha) V|
= dij + (Havi)" Ry Hay;
e estimate of forecast error variance reduction:
trace([| —C 1] diag(o?...q3)),
whereo; denotes the singular value of the routine HessianvgV

Hessian reduced rank estimate
more equations . ..


http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm384.pdf

Operational observation targeting in WSRP: Predefined flight tracks




Ranking of flight tracks based on ETKF
for add. obs. around 4 Feb, 00 UT, to improve the fc valid on 6 Feb,
00 UT over Alaska

Expectsd foracast smor raduction In varifleatlon ragien (VR) dus to adaptive sbsarvatione along filght tracks.
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PSU-NCEP ETKF bosad on 35—member 2003020200 COMBNED enesmbla, Best flight tracks: 16 15 55
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Ranking of flight tracks based on Hessian reduced rank estimate
for add. obs. around 4 Feb, 00 UT, to improve the fc valid on 6 Feb,

0.17 —

0.11 —

expected
reduction of
forecast error
variance (TE) o.os—
in SV

subspace

0.00 .

00 UT over Alaska

flight track number

4_’\5«

(courtesy of Alex Doerenbecher)



Maps of sensitive areas and associated reductions of forecast error

variance

140°E [“

160°E

20°N

180 160°W

contours: SV summary map used to

_identify a sensitive region. The field is

a singular value weighted average of the
vertically integrated total energy of the
leading 10 routine Hessian SVs.

reduction of forecast error
variance due to an additional sounding

. Vverification region: over Alaska

forecast range 48h
targeting time: 4 Feb 2003, 00UT

(courtesy of Alex Doerenbecher)



Comparing the expected impact of different observation types
expected reduction of forecast error variance

targeting date : 2003-08-19-18 / target : tegg ftg10p1 / verif box +48h (T E) in SV su bSpace
All HIRS channels noaa16 : 2003-08-19-18
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(courtesy of Alex Doerenbecher)



Atlantic TOST 2003

e SOP starts on 13th of October
e Obs targeting guidance based on

UKMO: Ensemble transform Kalman filter based on EC-ens.
MF: total energy SVs run on a (possibly perturbed) trajectory
ECMWE: 2 flavours of total energy SVs ahtkssian SVs

e sampling of alternative targets unlikely.

e starting point for verification exercise of Hessian reduced rank estimate. B
probably cases from many TOSTs need to be accumulated to arrive at a relia
verification. (tail of fc error distribution!)



Limitations/future directions - subspace

e How many SVs are required to reliably predict fc error variance reductions?
e rank(Lg,M ) < number of gridpoints in verification region.

e L95: 1 SV is sufficient, leading SV explairs 0.75 of total fc error variance
in verification region

e Cardinali and Buizza for 10 NORPEX cases: leading 10 TE-SVs expiain
40% of total fc error (measured with total energy TE) in verification region.

e necessity for updates of the singular vector subspace?
Depends on subspace size and the number and accuracy of added obs.



Limitations/future directions - perturbation dynamics

e simplifications of TL/AD: resolution, physical processes Marta Janiskova's
presentation)

e validity of tangent-linear assumption
Gilmour et al. 2001: probably not useful beyond 24 h; but measure of nonlir
earity dominated by small scales

Reynolds and Rosmond 2003: SVs useful up to 72 h (diagnostic in SV-spa
and scale-dependent diagnostic)

e perhaps combination of SV and ensemble based approach? Could handle r
linear saturation aspects more gracefully. But does validity of linear tran:
formation in ETKF technique goes much beyond the validity of the TL-
approximation?

e contribution of model error ???



Limitations/future directions - error statistics
shared with data assimilation:

e background error covariances...wavelet-approach (Mike Fisher), reduce
order evolvedP! (Brian Farrell and Petros J. loannou), ensemble based a
proaches (Peter Houtekamer)

e unaccounted correlation of obs error. Important for satellite data with ob
error correlations in space and between channetsptimal thinning (Liu and
Rabier 2003)

additional challenge for adaptive obs methods:

e prediction of the observational coverageasisimilatedobs. at a future time:
Nontrivial task for satellite data affected by cloud. The importance of thi
issue will grow with the number and accuracy of used satellite datalata
coverage fc based on model cloud?






slides

Adaptive observations for NWP 2
Ensemble Transform Kalmanfilter. . . . . . . . . . . . e 3
Techniques to predict changes of fcuncertainty. . . . . . . . . . . . . .. . . . . . .. . ... 4
Adjoint-based methods to predict sensitive regions. . . . . . . . . .. e 5
Adjoint-based methods to predict fc err variance reductions. . . . . . . . . . .. .. . o000 . 6

Planet L95 8
“Weather” on Planet L95. . . . . . . . . . e e e e e e 9
Previous studies of adaptive observing strategies . . . . . . . . . . .. 11
Routine observations used for NWP on Planet L95. . . . . . . . . . . . .. ... ... ... . ... .. 12
NWP Centres on L95. . . . . . . . . L e 13
2-day fc errors for Europe (EMO). . . . . . . . e e e e 14
(Co)variance prediction with the Kalman filter (routineobs) . . . . . . .. . ... .. ... ... ...... 15
Identifying the optimal position for an additional observation . . . . . .. .. .. .. ... ... ...... 16

Verification of the predictions of forecast error variance reductions due to additional observations (KalmadTilter)
Verification of the predictions of forecast error variance reductions due to additional observations (Kalmaa8ilter)

Reduced rank estimate of forecast errorvariance . . . . . . . . . ... 20
Variance reductions in the singular vector subspace. . . . . . . . . . . . ... . L L L oo 21
Arank-Lexample. . . . . . . L e e e e 22
Evaluation of the KF rank-1 predictions of forecast error variance reductions due to additional observatio@8
Approximation of the background errorcovariances . . . . . . . . . . . . .. . e e 24
Verification of 2-day forecast error variance reductions: Ol-rank 1 . . . . . . ... ... ... ... .... 25
Verification of 4-day forecast error variance reductions: KF-rank 1. . . . . .. ... ... ... ...... 26
Distribution of the optimal position (Ol-rank 1) for an additional obs in the Atlantic to improve the 2-day fc

OVEr EUIOPE. . . . . . o e e e e e e 27

Distribution of the optimal position for an additional obs in the Atlantic to improve the 2-day fc over Europe
(KFfullrank) . . . . o e e e e e e e 28



Distribution of 2-day forecast errors: KF-full rank versus KF-rank 1 . . . . . .. ... ... ... ..... 30

Distribution of 2-day fc errors over Europe (Ol-rank 1). . . . . . . . . . . . . e 31
Planet Earth 32
The Hessian. . . . . . . . o 33
A reduced rank estimate of forecast error variance reductions based on the Hessian . . . . . . ... .. 34
Operational observation targeting in WSRP: Predefined flighttracks. . . . . . . . ... ... ... .... 35
ETKF-ranking of flighttracks . . . . . . . . . . . . 36
HRRE-ranking of flighttracks. . . . . . . . . . . . . . e 37
Maps of sensitive areas and associated reductions of forecast error variance. . . . . . . ... ... ... 38
dropsondes versus HIRS . . . . . . . . . e e 39
Atlantic TOST 2003 . . . . . . o o e e e e e 40
Limitations/future directions - subspace . . . . . . . . . . . .. e e 41
Limitations - perturbation dynamics . . . . . . . . . . . o e e e 42
Limitations - error statistiCs . . . . . . . . . . . o e e e e e 43

slides 45



	Adaptive observations for NWP
	Ensemble Transform Kalman filter
	Techniques to predict changes of fc uncertainty
	Adjoint-based methods to predict sensitive regions
	Adjoint-based methods to predict fc err variance reductions

	Planet L95
	``Weather'' on Planet L95
	Previous studies of adaptive observing strategies
	Routine observations used for NWP on Planet L95
	NWP Centres on L95
	2-day fc errors for Europe (EMO)
	(Co)variance prediction with the Kalman filter (routine obs)
	Identifying the optimal position for an additional observation
	Verification of the predictions of forecast error variance reductions due to additional observations (Kalman filter)
	Verification of the predictions of forecast error variance reductions due to additional observations (Kalman filter)
	Reduced rank estimate of forecast error variance
	Variance reductions in the singular vector subspace
	A rank-1 example
	Evaluation of the KF rank-1 predictions of forecast error variance reductions due to additional observations
	Approximation of the background error covariances
	Verification of 2-day forecast error variance reductions: OI-rank 1
	Verification of 4-day forecast error variance reductions: KF-rank 1
	Distribution of the optimal position (OI-rank 1) for an additional obs in the Atlantic to improve the 2-day fc over Europe
	Distribution of the optimal position for an additional obs in the Atlantic to improve the 2-day fc over Europe (KF full rank)
	Distribution of 2-day forecast errors: KF-full rank versus KF-rank 1
	Distribution of 2-day fc errors over Europe (OI-rank 1)

	Planet Earth
	The Hessian
	A reduced rank estimate of forecast error variance reductions based on the Hessian
	Operational observation targeting in WSRP: Predefined flight tracks 
	ETKF-ranking of flight tracks
	HRRE-ranking of flight tracks
	Maps of sensitive areas and associated reductions of forecast error variance
	dropsondes versus HIRS
	Atlantic TOST 2003
	Limitations/future directions - subspace
	Limitations - perturbation dynamics
	Limitations - error statistics

	slides

