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Adaptive observations for NWP

• place additional in situ obs. in sensitive regions in order to constrain forecast
error (range/region).

Atlantic: FASTEX (1997), TOST (2003)
Pacific: NORPEX (1998), WSRP 99, 00,. . . 03

Several objective techniques have been developed that hold promise of identifying
optimal sitesfor additional observations.

• How optimal are theoptimal sitesreally?
Proper test with real obs is outstanding as it requires a large number of additional
targeted and un-targeted obs, and a large number of cases.

Perhaps in THORPEX?

• a more general goal for adaptive observation techniques:

Prediction of how forecast uncertainty changes due to intermittent modifi-
cations of the observing network.

Change of uncertainty predictions can be verified with OSEs in a similar way as the predic-
tions of ensemble spread can be verified.

ensemble fc adaptive obs
spread-skill relationship (change of fc uncertainty) - (change of skill) relationship



Ensemble Transform Kalman filter

• Ensemble Transformation: Bishop and Toth (1999)
• Ensemble Transform KF (ETKF): Bishop, Etherton and Majumdar (2001)

• Prediction of the reduction of forecast error variance: Majumdar et al. (2001)
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signal= fc(routine + adaptive obs.)− fc(routine obs.)
y-axis: (sample mean over many) realizations using 3D-Var assimilation
x-axis: variance prediction assuming ETKF assimilation.

−→ towards consistency between targeting and data assimilation?



Techniques to predict changes of fc uncertainty due to the assimilation
of additional observations

ingredients: statistics of initial condition errors,
of how they change due to an assimilation of additonal obs.,
perturbation dynamics from the obs. time to the verification time.

dynamics: ensembles↔ tangent-linear/adjoint techniques

data assimilation: Gaussian statistics

pert. obs.sqrt-type (ETKF)
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Kalman filter

consistency issue:targeting method↔ operational assimilation scheme



Adjoint-based methods to predict sensitive regions

Prediction of sensitive regions of the atmosphere using

• adjoint sensitivity with respect to the ICs, Rabier et al. (1996), Langland et al.
(1996), Gelaro et al. (1998)

• total energy singular vectors: Buizza and Montani (1999), Gelaro et al. (1999)

• Hessian singular vectors: Leutbecher et al. (2002)

• TE-metric inconsistent with structure functions used in data assimilation, evi-
dence from Cardinali and Buizza (2003):
Diagnostic of targeting based on total energy SVs: On average, small projection of analysis

differences (due to additional obs) on singular vectors, whereas forecast errors have a large pro-

jection on SV subspace. What would the same diagnostic yield for Hessian SVs?

But: How many obs? Which error characteristics? What spacing are required in
sensitive region to effectively constrain fc error?



Adjoint-based methods to predict forecast error variance reductions

• Assimilation of additional obs. is accounted for.

• Techniques are consistent with the variance estimates of the underlying varia-
tional assimilation schemes.

• prediction of fc error variance reduction due to additional obs in the direction
of an adjoint sensitivity:Kalman filter sensitity(Bergot and Doerenbecher
2002)

The Kalman filter sensitivity is closely related to the sensitivity with respect to observations

(Baker and Daley 2000; Doerenbecher and Bergot 2001)

• prediction of fc error variance reduction in a SV subspace,Hessian reduced
rank estimate(Leutbecher 2003)

•Both techniques can be seen as reduced rank approximations of Extended Kalman
filter predictions of forecast error variance reductions, where the KF is initialized
with the staticB of the variational assimilation scheme.



Outline

• evaluation of predictions of forecast error variance reductions in a simple
model

– Kalman filter

– Kalman filter - reduced rank estimate

– OI/3D-Var - reduced rank estimate

• the Hessian reduced rank estimate in an (almost) operational 4D-Var configu-
ration

• limitations/ future directions



Planet L95



“Weather” on Planet L95

dxi

dt
=−xi−2xi−1+xi−1xi+1−xi +F

with i = 1,2. . .40,
x0 = x40, x−1 = x39, x41 = x1

andF = 8

(Lorenz, 1995, ECMWF Sem. on Predictability
and Lorenz and Emanuel, 1998)

• time unit of 1 corresponds to 5 days

• chaotic system: 13 positive Lyapunov ex-
ponents, the largest corresponds to a dou-
bling time of 2.1 d



“Weather” on Planet L95

• variables fluctuate about mean in
a non-periodic manner with a cli-
matological standard deviation of
σclim = 3.6

• perturbation of initial conditions
grows with time and its leading
edge propagates “eastward” at a
speed of about 25 degrees/day

• homogeneous dynamics (invariant
under transformationi → i +1

• system of ODEs integrated with 4th
order Runge-Kutta,∆t = 3h

(1998)



Previous studies of adaptive observing strategies

• Lorenz and Emanuel, 1998: obs assimilated with direct insertion; best strategy
based on estimate of largest first guess error.
Fmodel= 0.95F

• Berliner et al., 1999: Extended Kalman filter assimilation and targeting ap-
proach (no statistical verification, only 4 cases discussed);Fmodel= F

• Hansen and Smith, 2000: Direct insertion/ Ensemble KF assimilation;Fmodel=
0.95F

“For analysis errors of sufficiently small magnitude, dynamically based
selection schemes will outperform those based only upon uncer-
tainty estimates; it is in this limit that singular vector-based adap-
tive observation strategies will be productive.”



Routine observations used for NWP on Planet L95

• observations every 6 hours, unbiased normally distributed error

• over land (positions 21–40): obs. at every location,σo = 0.05σclim

• over ocean (positions 1–20) :σo = 0.15σclim at “cloud-free locations”. Clouds
depend deterministically onx but in such a way that the space-time pattern
looks like a random process. The probability for occurence of cloud is 0.7.



NWP Centres on L95

• EMO: European Meteorological Office, Extended Kalman filter

• MC: Meteo-China, Optimum-Interpolation= 3D-Var

• EMO and MC have very good (perfect) nonlinear forecast models.

• EMO and MC are interested in adaptive observations in order to improve the
fc for Europe(LEu) at a range of up to 5 days. They both employ targeting
schemes that use initial error statistics consistent with their respective assimi-
lation schemes.

• Recently, they had a major experiment (SecondHemisphericAdaptive ob-
serving,Predictability-Intercomparison andResearchExperiment) in which
additional observations had been taken every day over a 1000 day period at
every ocean point withσo = 0.05σclim. Routinely, both plan to implement an
operational targeting scheme in which a targeted observation will be taken at
one ocean site.

• EMO and MC have evaluated their targeting schemes using the data from their
1000 day observing experiment.



2-day fc errors for Europe (EMO)
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• assim. with KF using routine obs.

• sample of 1000 daily forecasts

• rms error= 0.23= 0.06σclim



(Co)variance prediction with the Kalman filter (routine obs)
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Identifying the optimal position for an additional observation

background

control analysis

assimilation
of routine obs.

truth run

observation: truth + noise

assim. of routine+
additional obs.

Routine observations
analysis step at timet j :

(Pa
r )
−1 =

(
Pf

r

)−1
+HT

r R−1
r Hr

long forecastt j → t j+`:

Pf
r = M Pa

r MT

Routine obs +additional obs. at positioni
analysis step at timet j :

(Pa
i )
−1 =

(
Pf

r

)−1
+HT

r R−1
r Hr +HT

i R−1
i H i

long forecastt j → t j+`:

Pf
i = M Pa

i MT, for all i = 1, . . .20

Optimal positioni∗: selecti that gives maximum reduction of fc error variance.
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Verification of the predictions of forecast error variance reductions due
to additional observations (Kalman filter)
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Verification of the predictions of forecast error variance reductions due
to additional observations (Kalman filter)
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Approximations to the Kalman filter approach

1. At EMO: fc error covariance estimate

MPaMT

reduced rank: evolve covariances only in a subspace

2. At MC: static background error covariances (OI≈ 3D-Var≈ 4D-Var with obs.
at beginning of assim. window)

replace(Pa)−1 =
(
Pf

)−1+HTR−1H

by A−1 = B−1+HTR−1H



Reduced rank estimate of forecast error variance

• Compute variance of forecast errors only in a subspace of leading singular
vectors.

trace(Π̂ΠΠnLEuPf LT
EuΠ̂ΠΠ

T
n) instead of trace(LEuPf LT

Eu)

• Here,Π̂ΠΠn denotes the projection on the subspace of the leadingn (left) singular
vectors ofLEuM .

• The inverse of the routine analysis error covariance matrix(Pa
r )
−1 is an

appropriate choice for the initial time metric because the SVs computed with this
metric evolve into the leading eigenvectors of the routine forecast error covariance
matrix trace(LEuP

f
r LT

Eu).

• Notation: matrix containing the leadingn initial SVs as column vectors
Vn = (v1 . . .vn).



Variance reductions in the singular vector subspace

• Representation of analysis error covariances in the subspace spanned by the lead-
ing n initial SVs:

routine network: VnVT
n, where VT

n (Pa
r )
−1Vn = I

modified networki†: VnΓΓΓiΓΓΓT
i VT

n, where(VnΓΓΓi)T (Pa
i )
−1(VnΓΓΓi) = I

†) involves approximatingPa
i by a block-diagonal matrix in the space in which

Pa
r is the identity.

• the transformation matrixΓΓΓi is an inverse square root of then×n matrix Ci =
VT

n (Pa
i )
−1Vn = In + VT

nHT
i R−1

i H iVn. Matrix Ci expresses the modified analysis
error covariance metric in the basis of the singular vectors.

• forecast error variance:

trace(Π̂ΠΠnLEuPf LT
EuΠ̂ΠΠ

T
n) =

{
∑n

j=1σ2
j routine network

trace(ΓΓΓTdiag(σ2
1, . . . ,σ2

n)ΓΓΓ) modified network,

whereσ j denotes the singular value SVv j .



A rank-1 example
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operator for “Europe” (positions 21–28).

The modified analysis error covariance
metric evaluated in the direction of the
leading SV

Ci = vT
1 (Pa

i )
−1v1 = 1+v2

1(i)/σ−2
o

• The predicted forecast error variance for an
additional observation ati is σ2

1/Ci.
• An observation at position 15 would result
in a halfing of the 2-day forecast error
variance in the direction of the leading
evolved SV.



Evaluation of the KF rank-1 predictions of forecast error variance
reductions due to additional observations
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Approximation of the background error covariances

Replace the routine background error covariance matrixPf
r by a static background

error covariance matrixB (OI at MC)

• in the variance prediction (targeting) and

• in the assimilation algorithm.

MC has themagicB: The static background error covariance matrix is a sample
covariance matrix computed from forecast− truth differences.
Several iterations of updatingB = 〈(x f −xt)(x f −xt)T〉 over the 1000 day sample.

KF versus OI performance, global rms errors

range (d) 0 1 2 3 4 5
KF 0.11 0.17 0.25 0.38 0.57 0.80
OI 0.33 0.49 0.74 1.04 1.38 1.74
σclim = 3.6, σo,land = 0.18, σo,ocean= 0.54



Verification of 2-day forecast error variance reductions: OI-rank 1
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Verification of 4-day forecast error variance reductions: KF-rank 1
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Distribution of the optimal position (OI-rank 1) for an additional obs in
the Atlantic to improve the 2-day fc over Europe
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Distribution of the optimal position for an additional obs in the Atlantic
to improve the 2-day fc over Europe (KF full rank)
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Reduction of 2-day forecast error over Europe due to additional
observation at positioni (KF)

0 2 4 6 8 10 12 14 16 18 20
0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

fc range  2 days, 1000 day sample (A04)

position i of additional observation

rm
s(

i)
/ r

m
s(

co
nt

ro
l)



Distribution of 2-day forecast errors: KF-full rank versus KF-rank 1

tg obs (KF−rank 1)
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Distribution of 2-day fc errors over Europe (OI-rank 1)
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• prediction of forecast
error variance reductions
due to additional
observations

• rank reduction using a
subspace of Hessian
singular vectors using the
routine observations inJo

• initial error estimates
are consistent with the
covariance estimates of an
(almost) operational
variational data
assimilation scheme (6 h
4D-Var, T42 inner loop
only)



The Hessian
∂∂J

∂xi∂x j

Ludwig Otto Hesse
(1811–1874, K̈onigsberg, Heidelberg, M̈unchen)

• Variational data assimilation, incremental formulation, “inner loop”

J(x) =
1
2

xTB−1x+
1
2
(Hx−d)TR−1(Hx−d),

wherex denotes the departure from a background state andd the departure of the
observed values from the background interpolated to observation locations.
• Currently, the background error covariancesB are estimated from an ensemble
of analyses.
• An estimate of the analysis error covariances is obtained by theHessian

∇∇J = B−1+HTR−1H



A reduced rank estimate of forecast error variance reductions based on
the Hessian

Similar to KF/OI-reduced rank estimates but uses an analysis error covariance
estimates based on the Hessian.

• subspace: Hessian singular vectorsvi computed with the metric∇∇Jroutine

based on (an estimate of ) the routine observing network

• efficient computation of the analysis error covariance metric formodified obs.
network(routine+ additional) in the subspace:

Ci j = vT
i ∇∇Jmodv j = vT

i

(
∇∇Jroutine+HT

aR−1
a Ha

)
v j

= δi j + (Havi)T R−1
a Hav j

• estimate of forecast error variance reduction:

trace
([

I −C−1
]
diag(σ2

1 . . .σ2
n)

)
,

whereσ j denotes the singular value of the routine Hessian SVv j .

Hessian reduced rank estimate
more equations . . .

http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm384.pdf


Operational observation targeting in WSRP: Predefined flight tracks



Ranking of flight tracks based on ETKF
for add. obs. around 4 Feb, 00 UT, to improve the fc valid on 6 Feb,

00 UT over Alaska

flights from Anchorage flights from Honolulu



Ranking of flight tracks based on Hessian reduced rank estimate
for add. obs. around 4 Feb, 00 UT, to improve the fc valid on 6 Feb,

00 UT over Alaska

expected
reduction of

forecast error
variance (TE)

in SV
subspace

flight track number

(courtesy of Alex Doerenbecher)



Maps of sensitive areas and associated reductions of forecast error
variance

contours: SV summary map used to
identify a sensitive region. The field is
a singular value weighted average of the
vertically integrated total energy of the
leading 10 routine Hessian SVs.

shading: reduction of forecast error
variance due to an additional sounding
verification region: over Alaska
forecast range 48h
targeting time: 4 Feb 2003, 00UT

(courtesy of Alex Doerenbecher)



Comparing the expected impact of different observation types
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Atlantic TOST 2003

• SOP starts on 13th of October
• obs targeting guidance based on

UKMO: Ensemble transform Kalman filter based on EC-ens.

MF: total energy SVs run on a (possibly perturbed) trajectory

ECMWF: 2 flavours of total energy SVs andHessian SVs

• sampling of alternative targets unlikely.
• starting point for verification exercise of Hessian reduced rank estimate. But
probably cases from many TOSTs need to be accumulated to arrive at a reliable
verification. (tail of fc error distribution!)



Limitations/future directions - subspace

• How many SVs are required to reliably predict fc error variance reductions?

• rank(LEuM)≤ number of gridpoints in verification region.

• L95: 1 SV is sufficient, leading SV explains∼ 0.75 of total fc error variance
in verification region

• Cardinali and Buizza for 10 NORPEX cases: leading 10 TE-SVs explain≈
40% of total fc error (measured with total energy TE) in verification region.

• necessity for updates of the singular vector subspace?
Depends on subspace size and the number and accuracy of added obs.



Limitations/future directions - perturbation dynamics

• simplifications of TL/AD: resolution, physical processes (→Marta Janiskova’s
presentation)

• validity of tangent-linear assumption
Gilmour et al. 2001: probably not useful beyond 24 h; but measure of nonlin-
earity dominated by small scales

Reynolds and Rosmond 2003: SVs useful up to 72 h (diagnostic in SV-space
and scale-dependent diagnostic)

• perhaps combination of SV and ensemble based approach? Could handle non-
linear saturation aspects more gracefully. But does validity of linear trans-
formation in ETKF technique goes much beyond the validity of the TL-
approximation?

• contribution of model error ???



Limitations/future directions - error statistics

shared with data assimilation:

• background error covariances. . . wavelet-approach (Mike Fisher), reduced-
order evolvedPf (Brian Farrell and Petros J. Ioannou), ensemble based ap-
proaches (Peter Houtekamer)

• unaccounted correlation of obs error. Important for satellite data with obs.
error correlations in space and between channels→ optimal thinning (Liu and
Rabier 2003)

additional challenge for adaptive obs methods:

• prediction of the observational coverage ofassimilatedobs. at a future time:
Nontrivial task for satellite data affected by cloud. The importance of this
issue will grow with the number and accuracy of used satellite data.→ data
coverage fc based on model cloud?



The End
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