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Outline
Consider 4D-Var & EnKF for NWP applications
Look at how they represent covariances, and hence 

their expected properties

Incremental 4D-Var as a 4D covariance model

EnKF sampling of covariances
Compare assimilation characteristics
Ease of implementation
Two ways forward
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Data Assimilation
Represent

– in terms of NWP model variables
– Uncertainty ⇒ PDF of all variables

Evolve
– using physically based NWP equations
– should propagate uncertainty & allow for model 

error ⇒ Fokker-Planck equation

Combine using Bayes theorem
– characterise observation uncertainties
– PDFs are unknowable!
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Fokker-Planck Equation
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Bayes’ Theorem
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Flaws in “traditional” 4D-Var derivation

The atmosphere can be chaotic at most 
scales, some with very short timescales.
The 4D-Var penalty function for a “perfect” 
model will be fractal because of the chaotic 
scales represented, so a descent algorithm 
cannot work.
There is no basis for saying the maximum of a 
complicated PDF is the best analysis.
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Synoptic-scale Incremental 4D-Var

Assume background PDFs are Gaussian
Reduce dimensionality
Linear evolution
Builds on existing 3D-Var
Can be thought of as a 4D (time & space) 
PDF describing uncertainty, 
for use in Bayesian fit to all observations in a 
4D time-window.



10 Andrew Lorenc.  ECMWF Seminar, Sept 2003.     © Crown copyright

Incremental 4D-Var

Simplified
Gaussian
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Full model evolves mean of pdf

PF model evolves any simplified perturbation,
and hence covariance of pdf
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Incremental 4D-Var
3D-Var supplies 3D covariance at t=0, consistent with 
dynamical balance relationships
PF model evolves this in time, to create a 4D covariance 
consistent with PF equations
Do a 4D fit to observations in the time-window
Covariances define relative weighting, interpolation and 
extrapolation of observations in space & time
Covariances (thro’ null-space) define classes of 4D analysis 
increments which are not allowed 

(e.g. unbalanced, or inconsistent with PF equations)



Incremental 4D-Var Equations
δ x is 4D increment to 4D guess: g δ= +x x x

Want 4D fit,  minimising:
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y is prediction of obs in time window: ( )H=y x

v is transformed control variable: ISδ −=x MUv
IS−  is incrementing operator,

M  is Perturbation Forecast model,
U is 3DVAR variable transform,

IS− MU models 4D covariance ( )xB :
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Benefits of 4D-Var
Retains benefits of 3D-Var:

– assimilation of radiances, good balance, …

Better than 3D-Var in using obs where there 
are tendencies represented by PF model

– e.g. baroclinic developments ⇒ severe weather

Scope for better assimilation of cloud and ppn
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Ensemble Kalman Filter

Gaussian
pdf t0

` Gaussian
pdf t1

Full model evolves each ensemble member

Mean & covariance of ensemble members
define evolved pdf
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Extended Kalman Filter
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EnKF
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A form of square-root filter:



18 Andrew Lorenc.  ECMWF Seminar, Sept 2003.     © Crown copyright

Errors in sampled EnKF covariances
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Errors in sampled EnKF covariances 
(2)

A sub-optimal Kalman gain calculated using the estimated
covariances:

( ) 1−+= RHHPHPK Tf
e

Tf
ee ,

gives larger analysis errors, which can be calculated if one knows
the true covariance:

( ) T
e

Tf
e

f
e

fa KRHHPKHPKPP ++−= 2 .

Global average variance, using a perfect ob:
• Correct   K   gives 1–0.0015
• Sampled eK  gives 1+0.0087
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The Schur or Hadamard Product

Curve C chosen such that covariances go to zero at distance. 
e.g. compactly supported (4.10) from Gapsari and Cohn (1999)

This gives:
Ensemble covariances modified to be 0 at distance.
Covariance function slightly narrower than ideal.

n=100 * compact support
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Best scale for C depends on ensemble size N:
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Choices in EnKF
Treat pdfs as Gaussian

– represented by mean & covariance
– excludes Ens DA methods for small nonlinear problems

Localise covariances
– excludes ETKF

How to generate analysis ensemble?
? Perturbed observations
? Transform methods (ETKF EAKF EnSRF)
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Perturbed model & observation ensemble
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Transform methods avoiding perturbed obs
Using SVD, transform { }fix  w ith covariance    Tf f f=P X X

into { }a
ix  w ith  ( ) 1Ta a a f f T f T f−

= = − +P X X P PH HPH R HP :

1) Update all ensemble by mean increment.
2) Scale perturbations to have correct covariance:
  - Ensemble Adjustment Kalman Filter (Anderson):

a T f=X A X .
  - Ensemble Transform Kalman Filter (Bishop):

a f=X X T.
  - Ensemble square root filter (Tippett et al):

sequential processing of obs
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Properties of transform methods

Mathematically equivalent for Gaussian pdfs
Reduces errors due to noisy estimation of 
covariances (Whitaker & Hamill)
If covariance localisation is wanted, then only 
practicable with sequential processing of obs
Localised sequential processing EnSRF is 
simple to code and implement
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Degenerate covariances
The basic EnKF (without the Schur product) 
only has N degrees of freedom available to fit 
the observations.
A perfect observation removes a degree of 
freedom from the ensemble:
So the EnKF can only fit N pieces of 
information (in an area whose size depends 
on the Schur product correlation scale).
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Degenerate covariances
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Balance



29 Andrew Lorenc.  ECMWF Seminar, Sept 2003.     © Crown copyright

Effect of Schur product on geostrophic balance

Height covariances drop off more steeply, 

increasing geostrophic wind inplied by a single height 
observation, 

but height-wind covariances are reduced, reducing 
actual wind increments.

Effect of Schur product on balance
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Non-Gaussian Analysis Equations 
(1)

Can be done in principle, but too difficult & costly for 
NWP - requires nonlinear ensemble adjustment, or
resampling.
I only consider applying the standard eqn to:
1 non-linear observation operators
2 Quality Control
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Non-Gaussian Analysis Equations (2)
Quality Control

For situations where information from nearby 
observations helps (e.g. extreme obs corroborating each 
other), Var with a non-quadratic penalty function should 
do better than the (sequential Gaussian) EnKF.
But many QC decisions are in data-sparse areas, where 
the principle source of corroborative information is the 
forecast.  If the error variance “of the day” from the 
ensemble, despite sampling noise, is more accurate than 
that assumed in Var, then the EnKF will do better.
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Assimilation characteristics
Incremental 4D-Var EnKF

Forecast
covariances

Modelled at t0 (usually
isotropic), time evolution for a
finite time-window represented
by linear and adjoint models.

Sampled by ensemble (flow-
dependent).  Noisy: must be
modified to have compact
support using Schur product.

Ability to fit
detailed
observations.

Limited by resolution of
simplified model.
Tendencies fitted within time-
window.

Fewer data (in a region) than
ensemble members.
Tendency information only
extracted if obs properly fitted.

Balance constraints Can be imposed through a
dynamical design to the
variable transform, or a separate
balance penalty.

Only imposed if each forecast in
the ensemble is balanced.  Lost
slightly in Schur product.

Nonlinear
observation
operators

Allowed if differentiable.
(Results uncertain if pdf is
bimodal in range of interest.)

Allowed, but resulting pdf
modelled by Gaussian.

Non-Gaussian
observational errors

Allowed if differentiable.
(Results uncertain if pdf is
bimodal in range of interest.)

Not allowed.  Prior QC step is
needed.
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Practical characteristics
Incremental 4D-Var EnKF

Forecast
model

Predict evolution of mean.
No switches.

Predict typical state.  May have
stochastic physics and switches.

Linear
model

Predict average evolution of finite
perturbations from the mean.
May be simplified.

Not needed.

Adjoint
model

Needed for (simplified) linear
model.

Not needed.

Covariance
model

Significant effort for covariance
model.  Adjoint code needed.

Simple correlation in Schur
product.  Covariance inflation to
keep the right spread.

Observation
operators

Linear and adjoint operators
needed (not usually difficult).

Only uses forward operators.

Analysis
algorithm

Descent algorithm available as "off
the shelf" software.

EnSRF very easy.
Simultaneous box algorithms are
more complicated (like OI).

Suitability
for parallel
computers

Require parallel simplified and
adjoint models.

Forecasts can run in parallel.
Covariances require a transposition.
Sequential proc of obs difficult.

Limited-area
modelling

Error covariance models OK to
specify boundary value errors

Ensemble of global forecasts to
provide boundary conditions.
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Two possible ways forward

Hybrid 4D-Var - EnKF for mainstream NWP

Nested EnKF for special applications
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Mainstream NWP Systems - requirements
High resolution to reduced errors of representativeness
Analyse all scales with significant errors
Quality control observations
Use nonlinear observations
Update satellite bias corrections
Better (mean) short-period forecast 

more important than better error estimates

VAR can address all of these simultaneously
⇒Seek to enhance it by adding benefits of EnKF
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Variational use of EnKF covariance 
(1)

Can use the ensemble generated covariances 
in a variational algorithm
This should give identical results to the mean 
from an ideal EnKF algorithm
As usual with VAR, the analysis error 
covariance is not automatically obtained
So the VAR method cannot easily generate 
an ensemble, but it can use one made by 
another system.
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Variational use of EnKF covariance 
(1)
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(2)

Similarly, 
VAR can  

use 
ensemble 

covariances 
modified by 

a Schur
product:
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β

(3)

VAR can use the 
ensemble to 
augment the 
“traditional” 
covariance 

model with some 
Errors Of The

Day.

Dale Barker & Adrian Semple at Met Office.
Hamill & Snyder (2000).

Should reduce “traditional” error covariances to compensate for 
those represented by the ensemble (β>1).
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Response to a single T ob

Basic 3D-Var 3D-Var + 1 bred mode
Dale Barker  EOTD expts.
Mark Dubal GCT expts.
Adrian Semple, 2001: A Meteorological Assessment of the Geostrophic Co-ordinate Transform and Error Breeding System When used in 3D Variational Data Assimilation.   NWP Tech Rep 357.
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Hybrid 4D-Var EnKF - a possible scenario
High resolution “control” NWP model, for the best possible 
prediction of the “best” estimate.
Incremental 4D-Var, using all relevant observations in a 
time-window (including nonlinear H, and QC).
Final outer-iteration at sufficient resolution to extract 
information from the tendencies between consecutive 
observed fields.
Background Covariances in 4D-Var enhanced by synoptic-
scale Errors of The Day from an ensemble of perturbations.
Ensemble propagated using an ETKF  

centred on the high-res 4D-Var control.
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EnKF for special applications
Large uncertainty ⇒ difficulty with 4D-Var:

– Deterministic NWP model for ensemble mean
– Evolution of perturbations nonlinear

EnKF can work with large uncertainty:
– Sparse observations (Whitaker et al.)
– Idealized convective-scale, with no large-scale errors (Snyder & Zhang)

EnKF is easy to develop, even if model is also developing

Use EnKF for R&D of new NWP applications with large 
uncertainty (e.g. convective-scale)

Nested in mainstream NWP bcs to give synoptic-scales
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4D-Var v
EnKF

Summary
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