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Linearized models in NWP

* different applications:

— variational data assimilation @<—— incremental 4D-Var at ECMWF
— singular vector computations ——— nitial perturbations for EPS

— sensitivity analysis <« forecast errors

* first applications with adiabatic linearized model

* nowadays, including the physical processes in the linearized model

4D-Var - Four-dimensional Variational Data Assimilation ECMWF, Reading
EPS - Ensemble Prediction System



Linearized model with physical processes

Including physical processes can:

* in variational data assimilation:
— reduce spin-up
— provide a better agreement between the model and data
— produce an initial atmospheric state more consistent with physical processes

— allow the use of new (satellite) observations (rain, clouds, soil moisture, ...)

* in singular vector computations:
— help to represent some atmospheric features

(processes in PBL, tropical instabilities, development of baroclinic instabilities, ...)

* in sensitivity analysis:
— allow a reduction of forecast error

* adjoint of physical processes can also be used for:
— model parameter estimation
— sensitivity of the parametrization scheme to input parameters

C3@= ECMWF, Reading
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Development of a physical package

* for important applications:
— incremental 4D-Var (ECMWEF, Météo-France),
— simplified gradients in 4D-Var (Zupanski 1993),
— the initial perturbations computed for EPS (ECMWEF),
linearized versions of forecast models are run at lower resolution

v

the linear model can be “not tangent” to the full model
(different resolution and geometry, different physics)

v

simplified approaches as a way to include progressively physical
processes in TL and AD models

* simplifications done with the aim to have a physical package:
— simple — for the linearization of the model equations
— regular — to avoid strong non-linearities and thresholds
— realistic enough

— computationally affordable

TL — tangent linear ECMWEF, Reading
AD - adjoint



Full nonlinear vs. simplified physical parametrizations

In NWP - a tendency to develop more and more sophisticated physical
parametrizations — they may contain more discontinuities

v

For the “perturbation” model — more important to describe basic
physical tendencies while avoiding the problem of discontinuities

Level of simplifications and/or required complexity depends on:

* which level of improvement is expected (for different variables, vertical and horizontal
resolution, ...)
* which type of observations should be assimilated

* necessity to remove threshold processes

Different ways of simplifications:

* development of simplified physics (for instance, gaining from experience with
simpler parametrization schemes used in history)
* applying only part of linearization

C3@= ECMWF, Reading



Problems with including physics in adjoint models

* Development — requires substantial resources

* Validation — must be very thorough

(for non-linear, tangent-linear and adjoint versions)

* Computational cost — may be very high

* Non-linear and threshold nature of physical processes

(affecting the range of validity of the tangent-linear approximation)

ECMWF, Reading
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Validation of the physical parametrizations

Non-linear model:

* Forecast runs with particular modified/simplified physical parametrization schemes

Tangent-linear (TL) and adjoint (AD) model:

* classical validation (TL - Taylor formula, AD - test of adjoint identity)

* examination of the accuracy of the linearization

Comparison:

finite differences (FD) <> tangent-linear (TL) integration

M(x,)-Mxg) & Mlx,-x;)

(an = analysis ,  fg = first guess)

Singular vectors:

* Computation of singular vectors to find out whether the new schemes do not
produce spurious unstable modes.

C3@= ECMWF, Reading



Importance of the regularization of TL model

* physical processes are characterized by:

* threshold processes:

* discontinuities of some functions describing the physical processes

(some on/off processes)
* discontinuities of the derivative of a continuous function

* strong nonlinearities

ECMWF, Reading
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WHY REGULARIZATION IS IMPORTANT

Iv31 T* 1999-03-15 12h fc t+6 - TL with vdif (no regularization apied) [cont.int: 0.5e+07]
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Without any treatment of most serious threshold processes, the TL approximation can turn to be useless.
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SPURIOUS UNSTABLE MODES PRODUCED BY THE LINEARIZED PHYSICS

The first singular vectors located around the cyclone (58°E, 18°S) computed
at the resolution T95 (Barkmeijer, 2002)
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ratio of precip (one timestep)
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ratio of precip (one timestep)

Possible solution, but ...
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... may just postpone the problem and influence the performance of NL scheme

ratio of precip (one timestep)

081
0.6
0.4

0.2¢

0.0

10° 10
cloud water mixing ratio (kg kg™

“
*
‘O
*

*
Bp p
*

1073

’gjx1 >

sritical cloud water

dx2

|
|
|
I
|
|
|
|
|
|
|
g
a
|
|
|
In..
{072
|
|
|

p!

e
A4

ECMWF, Reading



ratio of precip (one timestep)

However, the better the model — the smaller the increments
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Examples of reqularizations and simplifications (1)

Regularization of vertical diffusion scheme:

* perturbation of the exchange coefficients (which are function of the Richardson

number Ri) is neglected, K’ = 0 (Mahfouf, 1999)

* reduced perturbation of the exchange 0:010 e o RetbEn
coefficients (Janiskova et al., 1999): ==+~ ocladsovaive
— original computation of Ri modified in 0.000 fesemnsasanmssasessority, [rRPUTUESS———"
order to modify/reduce f(Ri), or f(Ri) i:l‘.lflgl
—reducing a derivative, f'(Ri), by factor 10 0.010 i
in the central part (around the point of
singularity )
-0.020 A
-20. -10. 0. 10.
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Function of the Richardson number
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Examples of regularizations and simplifications (2)

* reduction of the time step to 10 seconds to guarantee stable time integrations
of the associated TL model (Zhu and Kamachi, 2000)

* selective regularization of the exchange coefficients K based on the linearization

error and a criterion for the numerical stability (Laroche et al., 2002)

ECMWF, Reading
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RMS error

Comparison:

FULL TL - K’=0 -reduced K’ — selective K’ (Laroche et al.2002)

RMS linearization errors for the potential temperature perturbations at the 1st level above the surface
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Importance of the regularization of TL model

* physical processes are characterized by:

* threshold processes:

* discontinuities of some functions describing the physical processes

(some on/off processes)
* discontinuities of the derivative of a continuous function

* strong nonlinearities

* regularizations help to remove the most important threshold processes in
physical parametrizations which can effect the range of validity of

the tangent linear approximation

* after solving the threshold problems

v

clear advantage of the diabatic TL evolution of errors compared to
the adiabatic evolution

C3@= ECMWF, Reading



Zonal wind increments at model level ~ 1000 hPa
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Simplified physical parametrizations

ECMWF LINEARIZED PHYSICS

vertical gravity . . deep large-scale
e radiation ; i
diffusion wave drag convection condensation

to to
be be
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by by
w LW
SL/ELT mass flux statistical
schemes convection Icloud scheme|
(cloud accounted
N— 7 A\ J/
~" v
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Tangent-linear diagnostics

Comparison:

finite differences (FD) <> tangent-linear (TL) integration

M(Xan)_M(ng) < M,(Xan _ng)

(an = analysis ,  fg = first guess)

Diagnostics:

* mean absolute errors: &= ‘ [M(Xan )_M(ng )]_M,(Xan B ng )‘

E - &
* relative error EXP REF .100%

EREF

ECMWEF, Reading
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Temperature

Impact of physical processes
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DR Impact of physical processes
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Temperature

Impact of physical processes
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Impact of physical processes

Temperature
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Impact of physical processes

Temperature
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Temperature Impact of physical processes
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Impact of physical processes

Temperature
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REF = ADIAB

0.025

0.01
-0.01

Impact of physical processes

Temperature

e

e

Sy
SN

,
NN

20

1 1 1 1 1
w| o
| €
o A 8=
> 3 —_ ©
@ o] 2 ©
88,99 252 g = 9| @
88.38
333588885 |2 ol et
._, L —_— F
.” T Te] W
H I - N
=
L O
3 Ll
(o]
N
1 1 1 1 1 0
(@) (@] @) o o an
q ® 4 0 ©
[oAg] [opow n_
)
L L L L L +
3| €
_1] O
2| &
=
2|3
. 8|2
=, 1+ (o]
= (8]
S +
(&)
2 1+
N
- / \
=
N Bl
4 |
N ..m = ge)
o = | 2
z | § i B
g |
W u— by
5 T3
=z m >
o .
© - g | =
) @
= 18 | ©
z | ® gl 3
m o I 7]
= 0
| I I R N N R R P a
2 42086420ﬂ o
~ T a



18
16
14
12

—
ONIEAOOOLOO

16
14
12

—
ONPA~O OO

Impact of physical processes

Zonal wind

_ relative improvement [%]

€EXP = €REF

X

adiabsvd vdif + gwd + radold +

Specific humidity

Isp + conv +radnew+cl _new

€EXP = €REF

relative improvement [%]

X

adiabsvd vdif + gwd + radold +

Isp + conv +radnew+cl new

10

model level
W N
(@) (@)

1N
o

50

10

model level
w
o

Iy
(@)

50

o
A4

60

--------- adiab
—-— adiabsvd
-——— vdif

gwd
radold

Isp
conv
radnew
cl_new

|TL-FD|
| FD |

--------- adiab
—-— adiabsvd
-—-—-—- vdif

gwd
radold

Isp

conv
radnew
cl_new

|TL-FD|
| FD |

55 50

175



Impact of moist processes (Isp + conv)

Sexp = EREF 10

REF = ADIAB

30 1

40

<
e o

[

50 -

60

80N 60N 40N 20N 0 208 40S 60S 80S

0.4

0.2

0.1

0.05

0.025

0.01
-0.01

-0.025

-0.05

0.1
0.05
0.025

0.0125

wws  Specific
oos - humidity: 7.7 %

-0.2

0.4
0.2
0.1
0.05
0.025

0.01
-0.01

-0.025
-0.05
-0.1
-0.2

-0.4
-0.8
-1.2

-1.6




Physics in 4D-Var

- In incremental 4D-Var, the objective function is minimized in terms of increments:

ox, =M(t,t,)0x, <« tangent linear model

with the model state defined at any time t.as: X, = x" + ox, , x’ = M (¢,,¢, )x’

- 4D-Var can be then approximated to the first order as minimizing:

U
2

j(5x0)=

SXIB 5%, + % S (H)(5x,) - d, )R (H (8x,)— d,
i=0

where d. =y’ —Hl.(x’.’

1

) IS the innovation vector

Gradient of the objective function to be minimized:
|

Vs J =B, +%Zn:MT(ti,to)HiTRil(Hlf (5xl.)—dl.)
i=0

d, < computed with the non-linear model at high resolution using full physics < M
o). ¢ < computed with the tangent-linear model at low resolution using simplified
physics < M’

Vgxoj < computed with a low resolution adjoint model using simplified physics « Mm!



Impact of the linearized physics in 4D-Var (1)

* comparisons of the operational version of 4D-Var against the version
without linearized physics included shows:

— positive impact on analysis and forecast

FORECAST VERIFICATION - 500 hPa GEOPOTENTIAL
period: 15/11/2000 — 13/12/2000

root mean square error — 29 cases
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Impact of the linearized physics in 4D-Var (2)

— reducing spin-up problem when using physical processes

Time evolution of global precipitation in the tropical belt [30S, 30N]
averaged over 14 forecasts issued from 4D-Var assimilation
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Impact of the linearized physics in 4D-Var (3)

1-DAY FORECAST ERROR OF 500 hPa GEOPOTENTIAL HEIGHT
OPER vs. NEWRAD (27/08/2001 t+24)
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1D-Var assimilation of observations related to the physical processes

* For a given observation y°, 1D-Var searches for the model state x=(T7,q,) that minimizes
the objective function:

1 = 1 o — 0
J(X) = E(X_ x")' B (x — X”)+5(H(X)—y )R (H(x)-y")
- . — _
~" —~
Background term Observation term

B = background error covariance matrix

R = observation and representativeness error covariance matrix

H = nonlinear observation operator (model space > observation space)
(physical parametrization schemes, microwave radiative transfer model,

reflectivity model, ...)

» The minimization requires an estimation of the gradient of the objective function:

VIx)=B'x-x)+H'R ' (H(x)-y°)

* The operator HT can be obtained:
— explicitly (Jacobian matrix)

— using the adjoint technique

ECMWF, Reading
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Precipitation assimilation at ECMWF

Goal: To assimilate observations related to precipitation and clouds in ECMWF’s
4D-Var system including parameterizations of atmospheric moist processes.

A bit of history:
» Work on precipitation assimilation at ECMWEF initiated by Mahfouf and Marécal.

* 1D-Var on TMI and SSM/I rainfall rates (RR) (M&M 2000).
* Indirect ‘“1D-Var + 4D-Var’ assimilation of RR more robust than direct 4D-Var.

» “1D-Var + 4D-Var’ assimilation of RR is able to improve humidity but also the
dynamics in the forecasts (M&M 2002).

More recent developments:

* New simplified convection scheme (Lopez 2003)
* New simplified cloud scheme (Tompkins & Janiskova 2003) used in 1D-Var
* Microwave Radiative Transfer Model (Bauer, Moreau 2002)

« Assimilation experiments of direct measurements from TRMM and SSM/I (TB or Z)
instead of indirect retrievals of rainfall rates, in a ‘1D-Var + 4D-Var’ framework.

TMI — TRMM Microwave Imager, TRMM — Tropical Rainfall Measuring Mission ECMWF, Reading
SSM/I — Special Sensor Microwave/lmager




“1D-Var+4D-Var” assimilation of observations related to precipitation

TMI TBs
or

TRMM-PR reflectivities
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1D-Var on TMI data (Lopez and Moreau, 2003)
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1D-Var on TMI Rain Rates / Brightness Temperatures
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1D-Var on TRMM/ Precipitation Radar data

(Benedetti, 2003)
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Tropical Cyclone Zoe (26 December 2002 @1200 UTC)

Vertical cross-section of rain rates (top, mm h-') and reflectivities (bottom, dBZ):
observed (left), background (middle), and analysed (right).
Black isolines on right panels = 1D-Var specific humidity increments.




“1D-Var+4D-Var”’ assimilation of TRMM-PR rain rates/reflectivities:

Impact on analysed and forecast TCWV and MSLP (Experiment — Control)
(Tropical Cyclone Zoe, 26-28 December 2002)
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liquid water path [ kg/m2 ]

total water vapour content [ kg/m2 |

1D-Var assimilation of ARM observations (1)

ARM SGP, May 1999 - observations: - surface downward longwave radiation (LWD),

- total column water vapour (TCWV)
- cloud liquid water path (LWP)
Observation operator includes: - shortwave and longwave radiation schemes
- diagnostic cloud scheme
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1D-Var assimilation of ARM observations (2)

Time series of the cloud fraction (%) for the period 20-26 May 1999.
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Cloudy AIRS Tbs and 4D-Var (Chevallier, 2003)

®* 4D-Var assumes that the forward operator is linear in the vicinity of
the background
v’ Fairly true for cloudy upper tropospheric channels
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* OX = perturbation
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Cloudy AIRS Tbs and 1D-Var

® | inear 1D-Var retrievals

v’ observations = 35 upper tropospheric AIRS channels

(Chevallier, 2003)

v’ performed only if clouds are detected in more than 13 channels
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Tropical singular vectors (Leutbecher and Van Der Grijn, 2003)

Probability that the cyclone KALUNDE will pass within 120 km radius during the next 120 hours

100 10°S numbers — real position of

the cyclone

at the certain hour
v green line — control T255 forecast
80 (unperturbed member

of ensemble)
70 6
P
60 20°S
Iso Tropical SV with adiabsvd
40 10°S
30
20 (06/03/2003 12 UTC)
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Sensitivity of the parametrization scheme to input variables

* using the adjoint technique

* adjoint FT of the linear operator F provides the gradient of an objective function J
with respect to X (input variables) given the gradient of J with respecttoy

(output variables): a7 r 0T

ox X ox

or Vi =Fx VT

EXAMPLE: sensitivity of radiation scheme - the gradient with respect to y of unity size
(i.e., perturbation of some of the radiation fluxes with +1 W.m>)

4 oF /0T  sensitivity to: temperature
oF / 0q spec.humidity
oF
VyJ = oF / oa cloud cover
2 oF /8q,, cloud Iwc
. oF / 0q;,, cloud iwc

* experiments done in the global model:

— potential for a thorough evaluation of the relative importance of different variables
for parametrization scheme

— investigation of spatial and temporal patterns of sensitivity variations

C3@= ECMWF, Reading
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model levels

model levels

Sensitivity of the shortwave upward radiation flux at the TOA with respect

to specific humidity [W.m-2/g.kg"] CLEAR SKY
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Sensitivity of the shortwave upward radiation flux at the TOA with respect
to specific humidity [W.m-2/g.kg-1] CLEAR SKY
Level 44 ~ 700 hPa
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dF/dq_swc 15 December 2000 12UTC ECMWF t+24 Lewel 44
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model levels

model levels

Sensitivity of the shortwave/longwave upward radiation flux at the TOA
with respect to cloud fraction [W.m-%/cloudfr]
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Summary

* Positive impact from including linearized physical parametrization schemes
(info the assimilating model, singular vector computations used in EPS)
has been demonstrated in experimental and operational runs.

* Adjoint of physical processes can also be used for sensitivity studies and model
parameter estimation.

* Physical parametrizations become important components in recent variational
data assimilation systems.

* Some care must be taken when deriving the linearized parametrization schemes

(regularizations/simplifications).

* This is particularly true for the assimilation of observations related to precipitation,
clouds and soil moisture, to which a lot of effort is currently devoted.

* One cannot also forget technical difficulties and time-consuming adjoint
development — reliable and efficient automatic tool for adjoint coding would be useful.

C Q= ECMWF, Reading
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FORECAST VERIFICATION - 500 hPa GEOPOTENTIAL

period: 11/05/2001 — 26/05/2001
(4D- Var experiments with the new linearized radiation: lin_rad)

root mean square error — 16 cases

Northern Hemisphere North America
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ROGT MEAN SOUARE ERROR FORECAST ROOT MEAN SOUARE ERROR FORECAST

N.HEM TIME=12 MEAN OVER 16 CASES

0 i 2 3 4 5 & T 8 g 10

Forecast Day

N.AMER TIME=12 MEAN OVER 16 CASES

110
100+
a0 -
B0
T
60+
504
40+
304
20+
10-

i 5 & 7T 8 8 10

Forecast Day

0

ECMWF, Reading



	Physical processes in adjoint models:potential pitfalls and benefits
	Validation  of  the  physical parametrizations
	Potential source of problem
	Impact of the linearized physics in 4D-Var  (1)

