

Flow Dependent Jb in a global grid-point 3D-var

R. J. Purser, W.-S. Wu, M. Pondeca, R. Treadon, D. Parrish, D. Kleist, J.C. Derber

Environmental Modeling Center

NCEP/NWS/NOAA

Overview

- Most current implementations of global variational analysis systems use spectrally defined background error covariances and analysis variables
- The improved specification of the background error covariances is an ongoing goal of data assimilation groups.
- NOAA/NWS/NCEP/EMC is attempting to improve our system by defining the background error covariance and analysis variables in grid-space

Analysis variable and Background error definition

- Spectral
 - Simple definitions of background error covariance straightforward
 - Consistent with spectral model
 - Poles easy to handle
 - Computational cost?

- Grid space
 - Inhomogeneous anisotropic background errors less complicated (but still not trivial)
 - Local definition of errors
 - Easy to distinguish between land-sea, tropics, midlatitudes, etc.
 - Consistency between global & regional systems

Grid-point space background

- Two major considerations
 - How to computational perform the background error computations
 - Recursive filters
 - How to define the appropriate background errors
 - Ongoing research

Recursive filters

- Closely related to diffusion operator methods (Derber and Rosati, 1989 and Weaver and Courtier, 2001)
- Most recent references
 - Purser, Wu, Parrish and Roberts, 2003: Numerical Aspects of the application of recursive filters to variational statistical analysis, Part I and II, Mon. Wea. Rev.
 - Wu, Purser and Parrish, 2002: Three-Dimensional variational analysis with spatially inhomogeneous covariances, Mon. Wea. Rev.

Recursive Filters

- 3-D representations from simple 1-D filters
- General 1-D form two steps

$$q_i = \beta p_i + \sum_{j=1}^n \alpha_j q_{i-j}$$

Advancing step

$$S_i = \beta q_i + \sum_{j=1}^n \alpha_j S_{i+j}$$

 $\beta = 1 - \sum_{j=1}^{n} a_j$

Backing step

Recursive Filters

• First order (n=1)

$$q_i = (1 - \alpha) p_i + \alpha q_{i-1}$$
$$s_i = (1 - \alpha) q_i + \alpha s_{i+1}$$

- Note recursive filter is self-adjoint
- Produces a quasi-Gaussian filter response

1-D Response

2-D isotropic application

• Successive application in x then y direction

Laplacian of 2-D

Comments on Recursive Filters

- 4th Order minimum
- Non-Gaussian isotropic shapes created by adding Gaussians
- Fat-tailed error covariances

Inhomogeneous anisotropic covariances on a globe

- A bit more complicated.
 - Smoothing must be done not only along x-y-z directions but along other directions as well triad hexad algorithms.
 - Transitions can create additional problems (solvable but at a cost)
 - polar problem

Isotropic Model

Anisotropic Model

qlf=20%

96

Isotropic Model

Anisotropic Model

qlf=20%

Transition problem

4 color triad 3 color triad 2nd degree bridging function no bridging function one iteration one iteration transition scale= .250 transition scale= .250

Incorporation in NCEP global system

- Version of NCEP global system developed identical to current experimental spectral system except:
 - Background term estimated using recursive filters
 - Modified error statistics (due to recursive filter form)
 - Balance equation
 - Minimization algorithm
 - No divergence tendency equation constraint (not currently used in spectral version)

Incorporation in NCEP global system

- Initial version attempting to produce similar to spectral version.
- Inner loop performed completely on linear Gaussian grid.

Background Term

• Initially assumes Background of the form:

$$B = B_{V}^{T/2} (B_{H}^{1} + B_{H}^{2} + B_{H}^{3}) B_{V}^{1/2}$$

- where $B_V^{1/2}$ includes the vertical component of the recursive filter and the balance relationships. This part of the background term is incorporated into the definition of the analysis variables
- and $B_H^1 + B_H^2 + B_H^3$ represents three horizontal applications of the recursive filters

Background Term

- The length scales used in $B_H^1 B_V^{1/2}$ and in the balance equation are calculated using the NMC method
- The length scales in B_H^2 are $\frac{1}{2}$ those in B_H^1 and B_H^3 are $\frac{1}{4}$ those in B_H^1 this gives fat-tail distribution
- Vertical error terms are defined for each latitude
- Horizontally homogeneous in physical space not grid space

Background Term

- Balance equation
 - function of latitude

$$T = A \psi$$

$$\chi = C \psi$$

 $p_s = D\psi$

Polar recursive filter problem

- Define two polar stereographic grids over north and south poles
- Interpolate values from Gaussian grid to polar grids (using blending region)
- Perform recursive filter on three grids (2 polar + 1 rest of globe
- recombine using adjoint of interpolations and blending

Minimization changes

- Since difficult to square-root $B_H^1 + B_H^2 + B_H^3$ use Derber and Rosati (1989) minimization algorithm (only requires B not B^{1/2})
- Requires saving 2 N component vectors (x, B⁻¹x)

Single point ob 45N180W T1000hPa

SSI

GSI

Single point ob 45N180W T1000hPa

SSI

Single point ob 45N180W T1000hPa

T analysis increment GSI ~500hPa

T analysis increment SSI ~500hPa

T GSI-SSI ~500hPa

S-100ma

T GSI-SSI 180W

Final comments

- NCEP is exploring the grid point form of the background error covariance (GMAO collaboration) to allow local definition of background error structure.
 - Need to complete modifications for parallel processing efficiency
 - Test current version to replace spectral version
 - Modification to work on regional and global domains
 - Inclusion of situation dependent covariances

Final comments

- Initial experiments (with some bugs) showed promising results (especially in the tropics)
- Defining the local background error structure remains an ongoing research problem.
 - Possibilities background structure based, ensemble based, etc.
 - Estimation and validation of statistics based on innovations
- Expectation is that improved specification of background error will result in largest enhancement of analysis quality.