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The new information

The innovations provide the new information to the
assimilation.

The innovations (d) = The observed departures from the
background
9 d=y- Hx,

If the distribution of the data in time is accounted for, then
d=y-HMx,

The calculations of the innovations are carried
out as accurately as practically possible:

¢ We use the full non-linear forecast model A, at highest
affordable resolution (T511)

¢ A large effort has been put on developing H to closely
mimic the real observation (e.g. RTTOV)
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Temporal evolution of innovations

Heikki Jarvinen (Tellus 2001) studied the innovations
within 3D-Var and 4D-Var with a 6-hour assimilation
window. Used Hollingsworth-Lonnberg (Tellus 1986)
de-correlation method to isolate Obs and Bg errors.

Aircraft data, N.Amer, 200 hPa
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Temporal evolution of innovations
Over 6 hours for Aircraft data, North America
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Average SV energy distribution for 18-20 Jan 1997
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The errors

Unfortunately, the observations y,

the background x,,

the model M and

the observation operators
are all affected by errors.

Let hat denote ‘the truth’, and g the error, then

A T A u "
y=y+g, <go,go > O Observation error covariance
_ 3 T\ 1
X, =X, T+ &, <£b,sb> =B Background error
MX gy =X 1) T &, <8 € > =Q Model error

HX , = HX , + & <£f,£§> =F Representativity error
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The innovation covariance

The innovation covariance can be written
<d,dT> =HP'H" +O+F—(HX" + XH")
with (Joiner and Dee, QJ 2000)

B/ = MBM" +Q

Confusion surrounding ‘Model error’.
¢ Q = Model error, due to imperfections in M/

¢ MBMT = Predictability error, due to evolution of
errors in the initial conditions

¢ P"=MBMT™ + Q = Forecast error
¢ B = Bg-error = Initial condition error
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4D-Var approximations

In our 4D-Var the ‘true’ co-variances are approximated:

O+F~R R diagonal
f{ ~ (0 No cross co-variances
Q ~ 0 Perfect model assumption

HP'H' ~HMBM 'H" Tangent linear obs. operators

Tangent linear forecast model

4D-Var: HUBMTHT+R TL dynamics?
TL physics?
3D-Fgat: HBH™+R Truncation?

B given through J -modelling
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Which data are useful?
At this point we can conclude that:

¢ An analysis scheme which models innovation co-

variances well is a good analysis scheme. We put
our effort on

Characterizing background error — but still simplified

Using the forecast model to evolve errors — but Q=0

Developing accurate observation operators — but R=0+F%l
Conversely:
¢ Observations whose innovations are easily
modelled, are useful observations

Un-correlated with the background

Un-correlated with other observations

Accurately characterized by H
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Validation

From samples of innovations we can compute

oy

If we knew how to diagnose

HMBM 'H' +R
in the full 4D-Var system,

then the two could be compared, and some shortcomings
due to the modelling assumptions might become apparent.

Discrepancies could be dueto H, M, B, R or Q !!!

In a ‘well-tuned’ system: <d,dT> . HMBM 'H' + R(+Q)
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What we expect...
(Fictitious example, for illustration only)

OREMBMEQ

Innovations Modelling of HMBMTHT +R +Q
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Diagnosing HMIBMTHT in 4D-Var

Due to its definition, the 4D-Var control-variable P is a
standard multivariately normal quantity, l.e.:

x~N(0,I)
and: Ly =0x~.(0,B)
HM & ~ N (0,HMBM 'H")

Randomization: Generate a random sample of N vectors,
PW), with zero mean and unit variance, then

Z(N)(Z(N))T — I(N)
LZ(N)(LZ(N))T — B(N)

Similarly, an estimate of HMBMTHT, can be obtained from

HML ;™ (HML )" = HMBM'H"" (M. Ehrendorfer)
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Diagnosing HMIBMTHT in 4D-Var

We compute 1 &
HMBM 'H' ~ ﬁz HMLy.(HMLy,)"
i=1

for a sample of N=100 vectors, accumulating variance-

contributions for the diagonal elements only.

The number of estimated diagonal elements = the
number of used observations (.3,500,000).

The uncertainty in the resulting randomization estimate
is about 3% .

In the following, we will see results of such
calculations with N=100, for:

¢ A few H of used data in 4D-Var
¢ Current L (that is, J,), and some earlier versions
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DRIBU, North Atlantic

Surface pressure data (hPa)
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20030205-12 to 20030211-12,
About 600 data per bin
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SYNOP, North Atlantic

Surface pressure data (hPa)
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20030205-12 to 20030211-12,
About 4,000 data per bin 6-hourly, 2,000 3-hourly, 1,000 1-hourly

EC Seminar 8-12 Sept 2003 — Innovation Statistics Slide 15 ECMWF -w



American wind profilers,
U-component (m/s), 300-200 hPa

20030205-12 to 20030211-12,
About 12,000 data per bin
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Aircraft data, North Atlantic
U-component (m/s), 300-200 hPa

0 Obs-Bg OR EHMBMH

0 2 4 6 8 10 12 0 2 4 6 8 10 12

20030205-12 to 20030211-12,
About 2,200 - 4,500 data per bin
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Used data (Sept 2003)

Conventional

¢ SYNOP
Surf.Press, Wind-10m, RH-2m
¢ AIREP
Wind, Temperature
¢ SATOB AMVs
Meteosat, GOES, MODIS
¢ DRIBU
Surf.Press, Wind-10m
¢ TEMP
Wind, Temp, Humidity profiles
¢ DROPSONDE
Wind and Temp profiles
¢ PILOT, Am+Eu+Jp Profilers
Wind profiles
¢ PAOB
Surface pressure proxy
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Satellite

¢ NOAA-15/16/17
HIRS, AMSU-A&B radiances
¢ AQUA
AIRS and AMSU-A radiances
¢ DMSP-13/14/15
SSMiI radiances
¢ Meteosat-5/7, GOES-9/10/12
Water Vapour radiances
¢ QuikScat
Ambiguous winds
¢ SBUV, (GOME), MIPAS
Layer ozone

In preparation: MSG, SSMI/S, Cloud and
precipitation data...
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One vertical column

H B H'

ey =

03 H]gHT
E ] (a scalar)
ps
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Relative Humidity HBHT
H is H(T,q,p)
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New humidity analysis formulation, E.Holm
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Zonal-mean Relative Humidity HBHT
H is H(T,q,ps)
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New humidity analysis formulation, E.Holm
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Comparison with innovation statistics

Humidity-sensitive radiances
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Temperature
HBHT (K)

T lev39 HBHT
(shaded),

Z 500 hPa
(contoured)
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Temperature HBHT (K)

zonally averaged cross-section

EC Seminar 8-12 Sept 2003 — Innovation Statistics




4

BG-error correlations (temperature)

from an Ensemble of 4D-Var assimilations
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Comparison with innovation statistics
Temperature: radiosonde and radiances
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h RMS | RMS . M
10 o . 14—

i 13-

ﬁ: h?: /.::‘_;

70 ; i

10670 = ‘.l' 05—

150 ] -

200 -

250 & ,

400 5 .-"f

W A1 i

w] & 3

1~ "— 1 . . 27

o U ]' 3 \_'i 0 ﬂ?ﬁ I 1!5 2 2!5 3 1 4] o ! Ty 4 A i

HBHT Innovations

EC Seminar 8-12 Sept 2003 — Innovation Statistics Slide 26



Zonal-mean U-component HBHT
(m/s)

EC Seminar 8-12 Sept 2003 — Innovation Statistics Slide 27




Comparison with innovation statistics
Wind: radiosonde and aircraft
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Jb modelling developments

¢ Base Jb statistics on an ensemble of 4D-Var
assimilations, rather than the lagged forecast (NMC-)
method which uses 48-24 hour forecast differences.

Forecast errors become more large-scale (both vertical and
horizontal) with time. Wind errors grow large particularly in upper
troposphere.

Ensemble spread provides a more direct estimate of errors in
short-range forecasts (M. Fisher).

¢ Allow vertical correlations to vary with horizontal
wave-number, and horizontal correlations to vary
with vertical level (non-separability).

This is a prevailing feature of short-range forecast error
(Phillips 1986; Courtier et al., Andersson et al., Rabier et al. 1998)
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Jb modelling developments
DA-ensemble vs ‘NMC-method’
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Jb modelling developments
Non-separable vs separable
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700
a =

HBH+R

for a range of different data type
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HBH+R

for a range of different data type
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Observation error correlation

Has most recently been studied by Bormann et al. (MWR
2003) and Liu and Rabier (QJ 2002).

SATOB (or AMV=Atm. Motion Vectors) and radiosonde co-
locations were studied, and error correlation functions were

fitted:
R(r) = R0£1 + %je“

With R, the intercept and L the length-scale.
Found L=190 km.

Eigenvectors of R were computed for an idealized
observational data set with regular 200 km spacing.
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Eigenvectors of R
for idealized observational dataset
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Summary and Conclusions (1)

¢ A method to diagnose the modelled evolution of
background error within 4D-Var has been developed.

¢ The modelling of innovations within 4D-Var has been
studied, and compared to actual innovation statistics.

¢ Discrepancies can be due to deficiencies in the
specification of B, R, H, M or Q.

= The evolution of MBMT is not as expected.

= There seems to be insufficient projection of B onto
growing modes — l,e. there is insufficient flow-
dependence in B.

= Comparison with EnKF could be performed by
replacing the vectors ox =Ly with vectors obtained
from ensemble differences. Also for DA-ensemble.
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Summary and Conclusions (2)

* It has not been possible to identify the model-error Q
contribution to the innovations, at this stage.

= Observation errors are specified far too large for
many satellite data types.

= Taking account of observation error correlations
within 4D-Var, would now seem important.

= DA-ensemble has provided noticeable improvement
over the lagged-forecast (NMC) method.

= The separability assumption (in B-modelling) is not
appropriate for joint analysis of stratosphere +
troposphere.
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Summary and Conclusions (3)

= There is insufficient regional variation in B.
Tropopause height and Boundary Layer height
variations are poorly represented. Wavelet-Jb.

= Current T, RH (and Z) BgErrors show marked flow
dependence. This should be validated against
innovations.

= The rapid baroclinic error growth within the 12-hour
assimilation window is currently underrepresented,
probably due to the (relatively) static nature of B.
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