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Modelling of Innovation 
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The new information

The innovations provide the new information to the 
assimilation.
The innovations (d) = The observed departures from the 
background

If the distribution of the data in time is accounted for, then

bxyd H−=

bxyd HM−=

The calculations of the innovations are carried 
out as accurately as practically possible:
We use the full non-linear forecast model M, at highest 
affordable resolution (T511)
A large effort has been put on developing H to closely 
mimic the real observation (e.g. RTTOV)
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Temporal evolution of innovations
Heikki Järvinen (Tellus 2001) studied the innovations 
within 3D-Var and 4D-Var with a 6-hour assimilation 
window. Used Hollingsworth-Lönnberg (Tellus 1986)  
de-correlation method to isolate Obs and Bg errors.

Aircraft data, N.Amer, 200 hPa
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Temporal evolution of innovations
Over 6 hours for Aircraft data, North America

m/s K
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Average SV energy distribution for 18-20 Jan 1997

SV1:25 average vertical distribution at 

initial time of the kinetic (dotted, x100) 

and total (solid, x100) energy, and the 

corresponding final time distributions. 

The bottom figure shows the SV1:25 

average total energy spectrum at initial

(x100) and at final time.

Note the SV typical upward and upscale 

energy transfer/growth, and the 

transformation from initial potential 

to mainly final kinetic energy.

(R. Buizza)
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The errors

Unfortunately, the observations y,
the background xb,
the model M and
the observation operators H

are all affected by errors.
Let hât denote ‘the truth’, and g the error, then

Oεε ˆ, T
oo = Observation error covariance

Background error

Model error

Representativity error

oˆ εyy +=

Bεε ˆ, T
bb =bbb ˆ εxx +=

Qεε ˆ, T
qq =qT)(t0)(t ˆˆ εxx += ==M

f)t((t) ˆˆˆ εxx += HH Fεε ˆ, T
ff =
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The innovation covariance

The innovation covariance can be written

with

)ˆˆˆˆ(ˆˆˆˆˆ, TTTT HXXHFOHPHdd +−++= f

QMBMP ˆˆˆˆˆ T +=f

(Joiner and Dee, QJ 2000)

Confusion surrounding ‘Model error’:
Q = Model error, due to imperfections in M
MBMT = Predictability error, due to evolution of 
errors in the initial conditions 
Pf = MBMT + Q = Forecast error
B = Bg-error = Initial condition error
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4D-Var approximations

In our 4D-Var the ‘true’ co-variances are approximated:
R diagonal
No cross co-variances
Perfect model assumption
Tangent linear obs. operators
Tangent linear forecast model

TL dynamics?
TL physics?
Truncation?

B given through Jb-modelling

RFO ≈+ ˆˆ

TTTˆˆˆ HHMBMHPH ≈f

0ˆ ≈X
0ˆ ≈Q

4D-Var: HMBMTHT+R

3D-Fgat: HBHT+R

OI: Bo+R
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Which data are useful?
At this point we can conclude that:

An analysis scheme which models innovation co-
variances well is a good analysis scheme. We put 
our effort on

Characterizing background error – but still simplified
Using the forecast model to evolve errors – but Q=0
Developing accurate observation operators – but R=O+F%I

Conversely:
Observations whose innovations are easily 

modelled, are useful observations
Un-correlated with the background
Un-correlated with other observations
Accurately characterized by H
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Validation

From samples of innovations we can compute

If we knew how to diagnose

in the full 4D-Var system,

then the two could be compared, and some shortcomings 
due to the modelling assumptions might become apparent.
Discrepancies could be due to H, M, B, R or Q !!!

T,dd

RHHMBM +TT

In a ‘well-tuned’ system: .T,dd )(TT QRHHMBM ++
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What we expect…
(Fictitious example, for illustration only)
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Diagnosing HMBMTHT in 4D-Var

Due to its definition, the 4D-Var control-variable P is a 
standard multivariately normal quantity, I.e.:

),0(~ INχ
),0(~ BxL Nδχ =and:

),0(~ TTHHMBMxHM Nδ

Randomization: Generate a random sample of N vectors, 
P(N), with zero mean and unit variance, then

)(T)()( )( NNN I≡χχ

Similarly, an estimate of HMBMTHT, can be obtained from 
)(TTT)()( )( NNN HHMBMHMLHML ≡χχ

)(T)()( )( NNN BLL ≡χχ

(M. Ehrendorfer)
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Diagnosing HMBMTHT in 4D-Var

We compute
T

1

TT )(1
i

N

i
iN

χχ HMLHMLHHMBM ∑
=

≈

for a sample of N=100 vectors, accumulating variance-
contributions for the diagonal elements only.
The number of estimated diagonal elements = the 
number of used observations (.3,500,000).
The uncertainty in the resulting randomization estimate 
is about 3% .

In the following, we will see results of such 
calculations with N=100, for:
A few H of used data in 4D-Var
Current L (that is, Jb), and some earlier versions
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DRIBU, North Atlantic
Surface pressure data (hPa)
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SYNOP, North Atlantic
Surface pressure data (hPa)
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American wind profilers,
U-component (m/s), 300-200 hPa
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Aircraft data, North Atlantic
U-component (m/s), 300-200 hPa
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Used data (Sept 2003)

Conventional Satellite
SYNOP

Surf.Press, Wind-10m, RH-2m
AIREP

Wind, Temperature
SATOB AMVs

Meteosat, GOES, MODIS
DRIBU

Surf.Press, Wind-10m
TEMP

Wind, Temp, Humidity profiles
DROPSONDE

Wind and Temp profiles
PILOT, Am+Eu+Jp Profilers

Wind profiles
PAOB

Surface pressure proxy

NOAA-15/16/17
HIRS, AMSU-A&B radiances

AQUA
AIRS and AMSU-A radiances

DMSP-13/14/15
SSMI radiances

Meteosat-5/7, GOES-9/10/12
Water Vapour radiances

QuikScat
Ambiguous winds

SBUV, (GOME), MIPAS
Layer ozone 

In preparation: MSG, SSMI/S, Cloud and 
precipitation data…
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One vertical column

H B TH

TB

qB

3oB

psB

T
H
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q
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∂
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3O
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∂
∂
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H
∂
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Relative Humidity HBHT

H is H(T,q,p)

New humidity analysis formulation, E.Holm
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Zonal-mean Relative Humidity HBHT

H is H(T,q,ps)
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New humidity analysis formulation, E.Holm
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Comparison with innovation statistics
Humidity-sensitive radiances

Innovations

HBHT
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Temperature 
HBHT (K)

T lev39 HBHT 

(shaded),

Z 500 hPa 
(contoured)
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Temperature HBHT (K)
zonally averaged cross-section
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BG-error correlations (temperature)
from an Ensemble of 4D-Var assimilations
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Comparison with innovation statistics
Temperature: radiosonde and radiances

InnovationsHBHT
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Zonal-mean U-component HBHT

(m/s)
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Comparison with innovation statistics
Wind: radiosonde and aircraft

InnovationsHBHT
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Jb modelling developments
Base Jb statistics on an ensemble of 4D-Var 

assimilations, rather than the lagged forecast (NMC-) 
method which uses 48-24 hour forecast differences.

Forecast errors become more large-scale (both vertical and 
horizontal) with time. Wind errors grow large particularly in upper 
troposphere.

Ensemble spread provides a more direct estimate of errors in 
short-range forecasts (M. Fisher).

Allow vertical correlations to vary with horizontal 
wave-number, and horizontal correlations to vary 
with vertical level (non-separability).

This is a prevailing feature of short-range forecast error 
(Phillips 1986; Courtier et al., Andersson et al., Rabier et al. 1998) 
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Jb modelling developments
DA-ensemble vs ‘NMC-method’

3.83HBHT NMC-method

1.03HBHT DA-Ensemble
0.92Innovations

Ps (hPa) N.Hem

Innovations

HBHT based on
DA-ensemble

HBHT based on
36-12 hour fc-diff
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Jb modelling developments
Non-separable vs separable

1.76HBHT Sep

1.03HBHT Non-Sep
0.92Innovations

Ps (hPa) N.Hem

Innovations
HBHT non-separable

HBHT separable
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HBH+R
for a range of different data type

Innovations

HBHT + R
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HBH+R
for a range of different data type

Innovations

HBHT + R
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Observation error correlation
Has most recently been studied by Bormann et al. (MWR
2003) and Liu and Rabier (QJ 2002).
SATOB (or AMV=Atm. Motion Vectors) and radiosonde co-
locations were studied, and error correlation functions were 
fitted:

With R0 the intercept and L the length-scale.
Found L=190 km.

Eigenvectors of R were computed for an idealized 
observational data set with regular 200 km spacing.

Lre
L
rRrR −





 += 1)( 0
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Eigenvectors of R
for idealized observational dataset

L=190 km.
200 km 
spacing.
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Summary and Conclusions (1)

A method to diagnose the modelled evolution of 
background error within 4D-Var has been developed.
The modelling of innovations within 4D-Var has been 
studied, and compared to actual innovation statistics.
Discrepancies can be due to deficiencies in the 
specification of B, R, H, M or Q.

The evolution of MBMT is not as expected.
There seems to be insufficient projection of B onto 
growing modes – I,e. there is insufficient flow-
dependence in B.
Comparison with EnKF could be performed by 
replacing the vectors                with vectors obtained 
from ensemble differences. Also for DA-ensemble.

χδ Lx =
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Summary and Conclusions (2)

It has not been possible to identify the model-error Q 
contribution to the innovations, at this stage.
Observation errors are specified far too large for 
many satellite data types.
Taking account of observation error correlations 
within 4D-Var, would now seem important.

DA-ensemble has provided noticeable improvement 
over the lagged-forecast (NMC) method.
The separability assumption (in B-modelling) is not 
appropriate for joint analysis of stratosphere + 
troposphere.
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Summary and Conclusions (3)

There is insufficient regional variation in B. 
Tropopause height and Boundary Layer height 
variations are poorly represented. Wavelet-Jb.
Current T, RH (and Z) BgErrors show marked flow 
dependence. This should be validated against 
innovations.

The rapid baroclinic error growth within the 12-hour 
assimilation window is currently underrepresented, 
probably due to the (relatively) static nature of B.
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