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Introduction to the Satellite Observing
System

® Two different types of space agencies

=» Research Agencies
=>» Operational Agencies

® Two ways of looking at the earth/atmosphere

= GEO (geostationary satellites)
= LEO (low earth observing satellites)
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RESEARCH AGENCIES

® NASA: National Aeronautics and Space Administration

® NASDA: National Space Development Agency (soon JAXA:

Japanese Aerospace eXploration Agency)
® ESA: European Space Agency

® ...(several other national agencies)

* Research Agencies promote demonstration missions, with innovative
technologies

 Research instruments can provide independent information for model
and/or other observations validation

* Near Real Time delivery of data is not necessarily a priority

 Research satellites pioneer future operational missions

* In principle, the life time of research missions is short (<10 years)
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OPERATIONAL AGENCIES

OEUMETSAT: EUrope’s METeorological SATellite
organisation

®NOAA: National Oceanic and Atmospheric Administration
=2 NOAA-NESDIS-DMSP
® JMA: Japan Meteorological Agency

® Russia, China,...

 Operational Systems inherit from Research demonstration missions
 Operational Satellites are committed to Real Time delivery to end-users

» Operational missions ensure a stabilised long-life mission technology
(HIRS instrument onboard NOAA satellites has lasted for ~30 years)
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Operational versus Research Agencies

® Thanks to a WMO initiative, R&D satellites are now fully
considered as part of the Global Observing System

¢ Should ease the transition from research to operations
#Has implications on NRT delivery requirements
® Operational centres use pragmatically R&D instruments:
¢ for model validation (POLDER, CERES,...)
¢ for data assimilation (ERS, QUIKSCAT, AIRS,...)
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GEOSTATIONARY OBSERVING SYSTEMS

(36 000 km from the earth)
® Advantages:

¢ Wide space coverage (whole disk)

¢ Very high temporal coverage ( a few minutes)

=» Particularly suitable for short-range NWP and Now-casting
applications

=>» Suitable also for meteorological feature tracking
¢ (Atmospheric Motion winds)

=>» Suitable for applications in which the diurnal cycle
representation is crucial

® Drawbacks:
4 Spatial coverage limited to the disk (need for constellation)

¢ Unsuitable to observe the polar regions
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Low Earth Orbiting OBSERVING SYSTEMS

(400 to 800 km from the Earth)

® Advantages:

¢ Cover the whole earth after several cycles (polar
orbiting satellites)

¢ More suitable to sound the atmosphere in the
microwave spectrum.

® Drawbacks:

¢ Moderate temporal sampling (several hours to go back
to the same point)

¢ Requires constellation to ensure a reasonable temporal
sampling
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Current Space based Observing System
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® What do satellite instruments measure?
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What do satellite instruments measure?

® Satellite instruments are specific in that they do not

measure directly geophysical quantities (temperature,
moisture, ozone, wind,...)

® Satellite instruments measure the radiation emitted by the
Earth/Atmosphere

® The conversion of this measurement into a geophysical
information is an inverse problem

® Data assimilation techniques try to solve this inverse
problem as “optimally” as possible

Yb = H(Xb) Forward modelling problem (Radiative Transfer Equation)

X =H'(Y,) Inverse problem (need for prior information)
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® Depending on the wavelength, the radiation at the top of the
atmosphere is sensitive to different atmospheric
constituents

Scat, Altimeter HIRS GOES
METEOSAT SBUV
AMSU, SSM/I AIRS
% .
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Three ways of sensing the Earth/Atmosphere

® Passive technologies

¢ Passive instruments sense the:

=» natural radiation emitted by the Earth/Atmosphere
=» solar radiation reflected by the Earth/Atmosphere

® Active technologies

¢ Active instruments:

=» Emit radiation towards the Earth/Atmosphere
=» Sense how much is scattered (or reflected) back

® GPS technologies

¢ GPS receivers:

=>» Measure the phase delay of a GPS signal when
refracted through the atmosphere
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Passive technologies

® “Imaging” instruments

¢ Sense in spectral “window” regions where the
atmosphere is close to transparent, therefore sense
essentially the surface emission

¢ Provide indirectly information on:

= VIS/IR: surface temperature, cloud top, wind (through
cloud motion), snow/ice, vegetation

= uW: surface ocean wind speed, sea-ice, total column
water vapour, cloud liquid water, rain

¢ Vis/IR instruments: AVHRR on NOAA, MODIS on
TERRA/AQUA, GOES+METEOSAT/MSG,...

¢ Microwave instruments: SSM/l on DMSP, TMI on TRMM,

AMSR on AQUA and ADEOS-2,.
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Passive technologies

® “sounding” instruments

¢ Sense in spectral regions where the contribution from
the surface is negligible (strong atmospheric
absorption bands)

¢ Provide indirectly information on:

=> IR: profiles of temperature-humidity-ozone, surface
temperature (limited to non cloudy areas)

= yW: temperature and humidity profiles (limited to non
rainy areas)

¢ IR instruments: HIRS on NOAA, AIRS on AQUA,
GOES,...

¢ Microwave instruments: AMSU-A, AMSU-B on NOAA,...
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Passive sounding instruments: AMSU-A
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Active technologies

® Active instruments

¢ Send radiation to a target (Earth/Atmosphere) and
measure what is back reflected/scattered.

¢ Provide indirectly information on:

=» Surface wind (scatterometers, radar altimeter)

=>» Sea surface height, wave height and spectra
(altimeters, SARSs)

=» Rain, cloud and aerosol profiles (radars, lidars)
= Atmospheric wind profiles (Doppler lidars)
=>» Moisture profiles (DIALS)

¢ TRMM-PR, ERS-2 (Scat/RA/SAR), SeaWinds on
QuikScat and ADEOS-2, ENVISAT (RA-2, ASAR)
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GPS radio occultation technologies

Rising occultation

» = the path of the ray
perigee through the
atmosphere

Setting
+  occultation

GPS

—

- GPS-MET, CHAMP

*The impact of the atmosphere on the sigp"él
propagation depends on the refractivity =>
the vertical profile of the refractivity (arp-i:l
further down temperature, humidity and
pressure) at the location of the ray perigee
can be inverted from the observation
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GPS radio occultation technologies

® GPS receivers on LEO work in the following way:

¢ Sense the phase delay of a radio signal as its propagation path
descents or ascents through the atmosphere and derives the
bending angle of the ray propagation path

¢ The impact of the atmosphere on the signal propagation depends
on the refractivity => the vertical profile of the refractivity (and
further down temperature, humidity and pressure) at the location
of the ray perigee can be inverted from the observation

¢ RO is self calibrating (because the it is based on change rate of
the phase delay and not on absolute phase) and provides high
vertical resolution

¢ GPS-MET, CHAMP.,...
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Inversion Techniques

Atmospheric/Oceanic models need initial conditions in terms of
geophysical parameters

-Data assimilation solves this inverse problem
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Inversion Problem: Example

Given one observation )/ (radiance), a background xb
(temperature/moisture/ozone/surface pressure/...), R
and B the associated error covariances,

The analysis equation reads:

BH'
HBHT LR [_)/—H(Xb)]

X, =x, +

The convolution of B and /{ will determine how a
given measurement information will be distributed in
space and among different geophysical quantities
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Inversion Problem: Example

Straight Dirac increment

If H=B=lI H=l, B=1+l, dy=1 H=l, E:EEEM{Q:U, dy=1
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Inversion Problem: Example

Broad increment
proportional to H

(Jacobian proportional to __ H=H{q, B=14, Vow™ |
weighting function)
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Inversion problem: Importance of B

® B together with H will propagate the information coming
from the satellite radiances that can sense very broad
atmospheric layer. Modelling of B is therefore crucial for a
proper assimilation of satellite radiances

® Problem even more complicated when:

=» radiance information has to be distributed in
temperature and moisture

® Problem even even more complicated when:

=» Radiance information has to be distributed in
temperature, moisture, ozone, CO2, cloud, rain,...

® Problem even even even more complicated when:

=» Radiance information has to be distributed in space and
time
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Inversion Techniques

® Data assimilation in some way or another converts
radiance measurements in temperature/moiture/winds,...

® Different possibilities
¢ Use of externally generated retrievals
¢ Use of interactive retrievals (e. g. 1D-Var retrievals)

¢ Direct use of radiances (e.g. 3D-Var or 4D-Var)

® In NWP at least, the direct assimilation of satellite raw
radiances has progressively replaced the assimilation of
retrievals
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Inversion Techniques

® The direct assimilation of radiances has several
advantages over that of retrievals:

=» avoid the contamination by external background
information for which error characteristics are poorly
known

=» Avoid further complicated errors entailed by the
processing of the data provider

=» Avoid vulnerability to changes in the processing of the
data provider

=>» Allow a faster implementation of new data (no delay due
to readiness of pre-processing)

=» 3D and 4D-Var allow for some (weak) non linearities in
the observation operator

=» Increments further constrained by many other
observations/information
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Inversion Techniques

® Exceptions exist:

¢ Atmospheric Motion Vectors from geostationary
satellites

=>» Poor ability to represent clouds in observation operators

=> Very easy to implement in the system (e.g. MODIS
polar winds)

¢ Surface Winds from Scatterometers

=» Observation operator highly nonlinear
=>» Validation easier with ancillary data

¢ Ozone information from UV instruments
=» Poor modelling of the Radiative Transfer in the UV

® The approach has to be based on pragmatism
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® Importance of satellite data in current NWP data
assimilation systems
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ECMWF operations September 2003 (26R3)

® AQUA AIRS

® 3xAMSUA (NOAA-15/16/17) + AQUA AMSUA

® 3 SSMI (F-13/14/15)

® 2xHIRS (NOAA-16/17)

® 2xAMSU-B (NOAA-16/17)

® Radiances from 5xGEOS (Met-5/7 GOES-9/10/12)

® Winds from 4xGEOS (Met-5/7 GOES-10/12)and MODIS/TERRA
® SeaWinds from QuiKSCAT

® ERS-2 Altimeter / SAR (limited coverage)

® SBUV (NOAA 16) 27 satellite data sources!
® ENVISAT OZONE (MIPAS)
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Boundary & Initial Field

Conventional
Observations

Current Satellites
Or Instruments

Future Satellites
Or Instruments

Orography
Surface Type/Veg.
Snow Cover

Soil Moisture
Albedo

Wind

Temperature

Humidity

Clouds/aerosols

Rain

Ozone /
Chemical Species

GPS
AVHRR, MODIS, AIRS
AVHRR, SSM/I

IASI,CrIS,GIFTS,polder

SYNOP (T,,,RH,_) SMOS
Manual OBS METEOSAT, GOES, GMS | SEVIRI
Ship, Buoy AVHRR, ATSR, AATSR SMOS,Jason-2...

SSM/I, AVHRR, AMSR
Alt, SAR, RA2, ASAR

SSM/IS

RS, Aircraft, Pilot
Profiler, SYNOP,
Ship, Buoy

RS, Aircraft, SYNOP
RS, SYNOP

SYNOP

Rain gauges

Ozone sondes

AMVs (GEO/MODIS),
SSM/I, ERS, QuikScat
Adeos-2, Windsat

AMSU-A, HIRS, AIRS
MODIS

HIRS, AMSU-B, METEOSAT
SSM/l, GOES,AIRS, MODIS
AVHRR, HIRS, GEO Sat.
MODIS, AIRS

TRMM/TMI, SSM/I

SBUV, SCIA, AIRS
HIRS-9, MIPAS, GOMOS

ADM-AEOLUS, ASCAT

IASI, CrIS, GIFTS,
SSM/IS, GRAS, ACEH+,...

IASI, MHS, SSM/IS,
SEVIRI, GRAS, ACEH+,...

IASI, CrlS, GIFTS,Earthcare
SEVIRI, CLOUDSAT,polder
Calipso,...

SSM/IS, AMSR, (E)GPM

IASI, OMI, OMPS, GOME-2 ...




Number of observational data used in the
ECMWF assimilation system (prior AIRS)
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Number of observational data used in the
ECMWF assimilation system (with AIRS)
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Current data count 206R3 (18/06/03 002)

Screened assimilated
® Synop: 190370  (0.27%) ® Synop: 38112 (1.06%)
® Aircraft: 233306 (0.33%) ® Aircraft: 146749 (4.07%)
® Satob: 543340 (0.78%) ® Satob: 71220 (1.97%)
® Dribu: 15081  (0.02%) ® Dribu: 4381 (0.12%)
® Temp: 110998 (0.16%) ® Temp: 63763 (1.77%)
® Pilot: 98364  (0.14%) ® Pilot: 56324 (1.56%)
® UpperSat : 68358565 (97.97%) ® UpperSat : 3107200 (86.19%)
® PAOB: 530 (0.00%) ® PAOB: 185 (0.00%)
® Scat: 222410  (.32%) ® Scat: 117196 (3.25%)

69 772 964 TOTAL: 3605130

TOTAL.:

99.07% of screened data are Satellite Data
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Information content

® A pure data count can be misleading (although these
absolute figures have direct cost/disk space implications)

® There are various ways of estimating the information
content of data types (see Cardinali’s lecture)

¢ Exemple: DFS =Degrees of Freedom for Signal
DFS =tr(I-AB™)

B Background error covariance matrix
or
H Observation operator
DFS =n— A
Aeo AB_I) R Observation error covariance matrix
where

A Analysis error covariance matrix

A=(B"'+H'"R'H)'
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Information content of the ECMWF
analysis (Fisher, 2003)
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Impact studies

® Observing System Experiments (OSEs) are a very useful
sanity check for both the data assimilation and the
observing system (see Dumelow’s lecture)

® A 120 case OSE has been undertaken at ECMWF (Kelly,
2003) to evaluate the quality of the different major
Observing Systems
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Impact of 3 sounding (AMSU-A) instruments

NOAA-15 (07:30 am)

NOAA-16 (13:30 pm)

NOAA-17 (10:00 am) 06Z

* At any time, NOAA-17 covers
large oceanic areas crucial for
global NWP forecasts and 127
insufficiently observed by the
NOAA-15-16 baseline (e.g.
Pacific Ocean at 06 and 127)

*A time/space uniform coverage
can be fully exploited by the
ECMWEF 4D-VAR system
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Outcome of the assimilation studies
(3SAT versus 2SAT)

7500 scores averaged over 40 cases
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Other (less spectacular?) examples of
successful assimilation of satellite data

® Assimilation of geostationary clear-sky water vapour
radiances

=>» Allow a global control of the Upper Tropospheric
Humidity in the Tropics

® Assimilation of ozone observations from MIPAS onboard
ENVISAT

=» Allow a reasonable distribution of ozone in the ECMWF
analysis
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Assimilation of Meteosat-7
clear-sky water vapour radiances

Impact of the data: Visible with passive HIRS-12 radiances (NOAA-15)
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Polar WV winds from MODIS

A00 to Y00 hFa

Source: P. Menzel, 2003




Vector difference of mean wind analyses MODIS-CTL Vector difference of mean wind analyses MODIS-CTL

Impact of MODIS polar winds

LEV=400, 20010306 to 20010403

LEWV=400, 20010306 to 20010403
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Difference
between the
mean wind
analyses of the
MODIS
experiment and
the control.

Hemispheric
forecast scores
for the MODIS
experiment and
the control.
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Assimilation of ozone data from MIPAS

Ozone profiles from sonde, 0010 and 0001
Neumnayer (Lat =-70.7,Lon = -8.3)
Date = 2003082622 Total vzane in DU from V61, 20030828

- sonde 0010 o 0001 Total ozame tn DI from 0001, 20030828
hPa — -
2
o No MIPAS
M
2
8]
104
Total pzone tn DU from @70, 20030828
E 20
?
0 304
@0 40
gy
07 MIPAS
100
2004
3004
400
A004
E00
13005 s r
oon
U 25 5 75 1o 125 15 175 20 295 25 25 av .
Ozone in mPa TOMS verif
The inclusion of ozone profiles from

MIPAS (ENVISAT) improve
substantially the representation of the
ozone field in the ECMWF model
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® Assimilation of satellite data: current issues
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Important issues for the assimilation of
satellite radiances

® Biases:

¢ Systematic errors must be removed before the
assimilation (bias correction)

¢ Various sources of systematic errors:
=» Instrument error (calibration)
=» Radiative transfer error
=» Cloud/rain detection error
=>» Background model error

¢ Difficult to disentangle between various sources

¢ Importance of MONITORING departures between model
background (and analysis) and various observations

see Talagrand and Andersson’s lectures
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Cross-validation between various instruments (1)

Comparing the model with independent
instruments help identifying the source of the

bias
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HIRS channel 5 (peaking around
600hPa) on NOAA-14 satellite has
+2.0K radiance bias against model

Instrument bias likely!

HIRS channel 5 (peaking around
600hPa) on NOAA-16 satellite has
no radiance bias against model.

! el
Emm—— ECMWF T



MIPAS retrievals (65-90S)

Pressure in hPa
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Important issues for the assimilation of
satellite radiances

® Quality control:
¢ To reject data of “bad” quality

¢ To reject data that cannot be simulated properly by the
model (or the observation operator)

¢ Clouds, rain, land surface emission,...
® Thinning:

¢ Discrepancy between satellite resolution and
background error covariance horizontal scales

¢ Computational burden of processing high resolution
data

¢ Poor representation of observation error correlations

ECMWF £



Important issues for the assimilation of
satellite radiances

® Observational error characterization:
¢ In principle much easier in radiance space

¢ However,

=» R should represent instrument, radiative transfer and
representativeness error (inter channel correlations)

® Radiative transfer forward modelling:
¢ To assimilate channels affected by solar reflection
¢ To assimilate radiances over land/ice
¢ To simulate radiances in the UV domain

¢ To properly account for trace gases, clouds,
precipitation, aerosols,...

ECMWF £



® Future evolution and challenges
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Future evolution and challenges

® Assimilation of advanced IR sounders
¢ Already happening!

¢ Main issues are:

=» Cloud detection
=» Data volume handling

=» Efficient monitoring and bias correction
> ...

¢ Environment opportunities (see Hollingsworth’s lecture)

¢ Within a few years, operational missions will fly these
instruments (3 advanced sounders in 2006)

ECMWF £
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Higher Spectral Resolution
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Better measure of improved resolution is
provided by the averaging kernels
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CLEAR CLOUDY
[]

AIRS channel 145 clear data
14.5micron
similar to HIRS channel 3 100hPa

AIRS channel 226 clear data
13.5micron
similar to HIRS channel 5 600hPa

AIRS channel 787 clear data
11 micron
similar to HIRS channel 8 window
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Data volume handling

*Every AIRS FOV provides 2300
radiances

A channel selection/data
compression strategy has to be
designed

*Day-1 approach using a frozen
set of 300 channels performs
reasonably well but SNR
performance is lost

Spectral compression using e.g.

truncated EOF’s is a way to ease
the data volume issue and
optimally retain the original
information in the data (to be
tested)
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AIRS monitoring

All channels summary
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AIRS forecast impact

RMS of 500hPa geopotential
forecast error averaged over
40 days (Dec 02/ Jan 03) Day-3

[AIRS error] minus [CTRL error]

The assimilation of Day-5
AIRS radiances
shows a small but
consistent positive
impact on forecast
quality in all areas

Day-7
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Satellite Transition Schedule

from POES era to NPOESS/EPS (source Hal Bloom)

|| WindSat/Coriolis
1

:

C1 NPOESS
METOP

[ [ 1]
EOS-Terra

‘ NPP

ECMWP el bicPBer 85304 05 06 07 08 09 10 11 12 1
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NPOESS Satellite

VIIRS

MPS -ozone
GPSOS - GPS occultation
ADCS - data collection

SESS - space environment
APS - aerosol polarimeter
SARSAT - search & rescue
TSIS - solar irradiance

ERBS - Earth radiation budget
ALT - altimeter

ECMWF seminar September 2003 Ec MWF —A



METOP Satellite

HIRS AVHRR GRAS
(1 OF 3 antennas)

GOME-2

S&R
relay antenna

S&R
DCS-ARGOS

3 antennas
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The Initial Joint Polar System

CMIS - upwave imager
VIIRS - vis/IR imager
CrlS -IR sounder
ATMS - pwave sounder

OMPS - ozone
GPSOS - GPS occultation

ADCS - data collection
SESS -space
environment

APS - aerosol
polarimeter

SARSAT - search &
rescue

TSIS - solar irradiance
ERBS - Earth radiation
budget

ALT - altimeter

NPOESS

AMSU-A/MHS - pwave sounder

HIRS - IR sounder
AVHRR - vis/IR imager
IASI - ad. IR sounder
GRAS - GPS occultation
GOME-2 - ozone
ASCAT - Scatterometer
S&R
DCS-ARGOS

METOP

l aa
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Future evolution and challenges
® Assimilation of clouds and precipitation

¢ Currently, the assimilation of satellite information
concerns only 20% of the globe

¢ The ability of atmospheric models to describe cloud
and precipitation is continuously improving

¢ A number of space missions are already up and major
others will come (GPM)

¢ Issues:

¢ Non smooth processes (see Janiskova’s lecture)
¢ Representativeness errors
¢ Predictability of the cloudy/rainy systems

¢ Radiative transfer and background error
modelling

ECMWF £



Model vs.Observation: TB,,,, [K]

7 January 2001, 15 UTC 7 January 2001, 12 UTC
Cyclone Ando North Atlantic front

Model

.




Exemple: 1D+4D-Var approach to assimilate
rain information from satellites

L™/

Rainfall
retrieval
algorithm
l v RT-model
BG (T.q) —> 1D-Var <+—— Cloud/Convection
l Minimizer

TCWV pseudo
obs.

—i_
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| 1D-Var results
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4D-Var forecast, 26/12/02 12 UTC + 24/48h
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GPM - Global Precipitation Mission

Constellation of Satellites
® Pre-existing operational-
experimental & dedicated

Core Constellationl sa:;llites with PMW
radiometers

® Revisit time
3-hour goal at ~90% of time
®Sun-synch & non-sun- synch

5

. % orbits
e E ;600-900 km altitudes

Core Satellite

® Non-sun-synchronous orbit
~ 65° inclination
~400 km altitude

® Dual frequency radar
Ku-Ka Bands (13.6-35 GHz)
~ 4 km horizontal resolution
~250 m vertical resolution

® Multifrequency radiometer
10.7, 19, 22, 37, 85, (150/183 ?) GHz V&H

ECMWF £
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Future evolution and challenges

® More generally, ACTIVE TECHNOLOGIES (radars,lidars) will provide
detailed vertical information on hydrometeors (Cloudsat, GPM, ...),
aerosols (EarthCare), wind (ADM-AEOLUS) that data assimilation

schemes should exploit (maybe challenging for variational schemes)

® Limb sounding (passive and active) techniques raise new challenges for
data assimilation. These instruments will also contribute to improved

temperature/moisture/ozone vertical resolution
® Satellite data will increasingly be of interest for:
¢ land data assimilation
= Surface type, soil moisture,...: MSG, MODIS, AMSR, SMOS,...

¢ Ocean data assimilation

= SST, sea state, salinity, gravity, ocean colour..: Topex, Jason(2),
ERS,SMOS, GRACE, GOCE, MERIS,...

ECMWF £



Concluding remarks

® Satellite data have been very succesfully exploited by new
data assimilation schemes (DA schemes are such that
introducing additional well characterised satellite data
improves the system)

® The combined availability of new accurate satellite
observations and improvement of models will allow an
improved extraction of information content from these new
data (parallel upgrades of B and Y)

® The proliferation of new satellite instruments makes it hard
for end-users to keep up (choices will have to be done)

® Massive investment in data handling and monitoring
should be done (or pursued)

® Short-loop dialogue between users and space agencies is

vital! f e
ECMWF S



THE LIST OF ACRONYMS WILL BE
PROVIDED IN THE
PROCEEDINGS!
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