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NWP: from observations and
models to weather maps
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Data assimilation
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Use the available observations together with the
model trajectory to provide IC for the forecast 
or (re-)analyses

Sequential: use observations in small batches, as they 
become available

Continuous: over a time window, use all observations. 
Obs at t2 are used for the analysis between t0 and t2 . 



Optimisation problem

Need for a statistical approach:

Find the best compromise between various sources of 
information: observations, background, 
dynamics/physics of the system

Trust them according to their error statistics



Introduction to 4D-Var

Four-dimensional variational 
assimilation

(Le Dimet and Talagrand; Lewis and Derber, 1985)



Principles of 4D-VAR assimilation
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Assumption of perfect model: one looks for 
the starting point of the trajectory



Approximations to 4D-Var: 
3D-Var and 3D-FGAT

3D-Var: One looks for 
the best compromise 
between the
background field and all 
available observations 
as if they were at the 
analysis time

•3D-FGAT: one compares 
the model to the
observations with no 
approximation, but 
performs a 3D analysis 
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Resolution of the optimisation 
problem
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where
x is the vector of atmospheric (model) variables,

xba « background » for the analysis,

y the vector of observations,

H the observation operator, including  the model integration,

Β the background error covariance matrix,

R the observation error covariance matrix.
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Minimize the 
cost function
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• This is the Optimal least-squares estimator 
minimum variance for the analysis error

• Or BLUE= Best Linear Unbiased Estimator
• If all errors are Gaussian, then it is also the 

maximum likelihood estimate
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(Lorenc, 1986)



Equivalence with Kalman filter
Optimal sequential assimilation:    loop over observation times ti

))()(()()( iiiiiia tttt bb xHyKxx −+=

1
iiiiiii )( −+= RHPHHPK TT

Analysis

b i 1 i( ) ( ( ))at M t+ =x x

i 1 i i i
a T

+ =P M P M
Forecast



Equivalence with Kalman filter
At the end of the assimilation window, 

same Optimal analysis 

obtained by 4D-Var and Kalman filter
(equivalent to the Kalman smoother over the whole assimilation window)

Comparison of the model trajectory to observations performed at « the 
appropriate time »

Full use of the dynamics over the window to update implicit forecast error 
matrix



Properties of Variational 
methods

Can be extended to non-Gaussian errors: Var-QC (Lorenc, Andersson)

Can use a wide range of observations including those with a complex link to 
atmospheric variables (eg radiances, Andersson et al, 1994)

Efficient use of asynoptic data (Järvinen, Andersson)



Practical Implementation



Tangent linear hypothesis

Method can be extended to weakly non-linear problems

One needs y-H(M(x)) to be able to be linearized around xb

Y-H(M(x)) = y-HM(x-xb) -H(M(xb)) + second-order terms



Computing technique: Minimisation

minimisation of the cost-function 

J(xb)

J = distance to obs and xb

• If operators are linear, cost-
function is quadratic and
minimisation can be carried out  
efficiently

• One needs several computations 
of J and its gradient (first
derivative)

Result = analysis



Computing technique: use of the adjoint
Variational assimilation needs the adjoint of the operators to 
compute the gradient of J with respect to the IC
The adjoint of the forecast model allows to link the gradient at any
time to the gradient at the beginning of the assimilation window

x0

∇x0J

J=f(x)

∇xJ : derivative of  J

M

M*



« Incremental » formulation
Minimize the cost function
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where
xδ is the vector of « increment » to the background,

H is the linearized and simplified observation operator.

xxδ⇒ can have a lower resolution than 

(Courtier, Thépaut, Hollingsworth, 1994)



Applications of the incremental 
technique in an operational context



Illustration: Burgers’ model

(Liu, 2002)



Experimental framework

1D circle:   Length=8000km. ∆x=100km. 

Burgers equation: non-linear advection-diffusion

Background error correlated with 

Observations available every grid-point, every 6h.

Errors 
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Various VAR experiments
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Burgers



Burgers
Illustrates 
the benefit
of using 
4D-Var in a 
simple 
context



Operational results 4D-Var 
vs 3D-Var



Prior studies in a quasi-operational
context 

Zupanski et al, Zou, Huang and Gustafsson: 
promising results in a limited area model

Thépaut, Rabier et al:
Very simplified version of linearized physics for 
TL and AD models
4D-Var over 6 and 12h  windows better than
3D-Var



Optimisation of 4D-Var 
on a 6-hr window: implementation at 

ECMWF
(Rabier et al, 2000; Mahfouf and Rabier, 2000; Klinker et al,2000)

Influence of the dynamics

Impact of linearized  physics

Diagnostics on pre-operational 4D-var



Influence of the dynamics

Standard 
baroclinic 
area in 
the 
Atlantic



Influence of 
the dynamics

Increments for 
a single obs

Dynamics change 
the increments



Influence of the dynamics

• Better
forecasts
during
FASTEX 

Analyses

Forecasts

4D-Var 3D-Var



Impact of linearized physics
in the minimisation

Better agreement between 
minimisation and model 
integrations at full 
resolution with full physics

Less spin-down

Slightly better forecasts



Diagnostics on pre-
operational results

Significantly 
better 
scores in 
both 
hemispheres



Diagnostics on pre-
operational results

Widespread 
improvement: 
differences 
between rms of 
24h errors.



Further Operational 
developments and results



Operational Developments

Extensions of 4D-Var

Extract temporal information through the use of frequent data
(Järvinen, Andersson)

Developments in the Jb formulation (Derber, Fisher)

12-hour 4D-Var (Bouttier)

Better handling of the trajectory (Trémolet)

Multi-incremental (Veersé and Thépaut)

Initialising with Digital Filter techniques (Gustafsson, Gauthier and Thépaut)

Continuous improvement of linearized physics (Janiskova…)



Results at Météo-France
Re-analysis during FASTEX:

Gain of 3m, 0.6 m/s at 300hPa  for the RMS 
error in Geopotential and wind 
over Europe at the 72h range

Operational implementation in 2000

(Desroziers, Hello, Thépaut, 2003)



Limitations and Perspectives

Limitations 

Heavy developments (coding of adjoint)
Limits of the Incremental technique

Perspectives

Model error to be included
Combination with more probabilistic techniques  (eg Ens Kalman filter)
Cloud and rain assimilation
Challenging issues for a higher-resolution analysis using high density 

satellite data



The End
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