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Outline

Diagnosing the Statistics of Background Error using Ensembles of Analyses

Modelling the Statistics in Spectral Space
- Relaxing constraints of isotropy and homogeneity

Incorporating Balance
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Diagnosing Background Error Statistics

Problem: We cannot produce samples of background 
error because we don’t know the true state.
Instead, we must either:

Disentangle background errors from the information we do 
have: innovation statistics.

(Hollingsworth and Lönnberg 1986, Tellus 111-136).

Or:
Use a surrogate quantity whose error statistics are similar to 
those of background error.

Forecast differences (Parrish and Derber 1992, 
MWR 1747-1763)
Differences between background fields from 
an ensemble of analyses.
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Estimating Background Error Statistics 
from Innovation Statistics

(from Järvinen, 2001)

Covariance of 
d=y-H(xb) for 
AIREP 
temperatures 
over USA, 
binned as a 
function of 
observation 
separation.



ECMWFSlide 5

Estimating Background Error Statistics 
from Forecast Differences

Differences are calculated between forecasts and 
analyses, or between pairs of forecasts, verifying at the 
same date/time, but with different initial times.
Parrish and Derber (1992) describe the method as “a very 
crude first step”!
The method is widely used.
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Estimating Background Error Statistics 
from Ensembles of Analyses

Suppose we perturb all the inputs to the 
analysis/forecast system with random perturbations, 
drawn from the relevant distributions:

The result will be a perturbed analysis and forecast, with 
perturbations characteristic of analysis and forecast 
error.
The perturbed forecast may be used as the background 
for the next (perturbed) cycle.
After several cycles, the system will have forgotten the 
original initial background perturbations.

Analysis
xb+εb

y+εo

SST+εSST (etc.)

xa+εa
Forecast

xf+εf
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Estimating Background Error Statistics 
from Ensembles of Analyses

Run the analysis system several times with different 
perturbations, and form differences between pairs of 
background fields.
These differences will have the statistical characteristics 
of background error (but twice the variance).

Background differences

Analysis Forecast
xb+εb

Analysis Forecast
xb+εb

Analysis Forecast
xb+εb

Analysis Forecast
xb+ηb

Analysis Forecast
xb+ηb

Analysis Forecast
xb+ηb
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Estimating Background Error Statistics 
from Ensembles of Analyses

Advantages:
- The method diagnoses the error characteristics of the actual 

analysis/forecast system.
- Analysis error and forecast error at any range can be diagnosed.
- Does not impose constraints on the observations used, provided their 

error characteristics are known.
- Produces global statistics of model variables.
- Produces good estimates in data-sparse regions.

Disadvantages:
- Computationally Expensive.
- Assumes a perfect model. (We could add model error if we knew what it 

looked like!)
- Assumes observation (SST, etc.) error characteristics are known.
- Danger of feedback. Eg: A noisy analysis system => unbalanced stats => 

Even noisier analysis system.
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Estimating Background Error Statistics 
from Ensembles of Analyses

500hPa Geopotential
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Estimating Background Error Statistics 
from Ensembles of Analyses

Forecast 
correlation 
minus analysis 
correlation for 
500hPa 
geopotential
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Estimating Background Error Statistics 
from Ensembles of Analyses

~200hPa

~500hPa

~850hPa
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Modelling the Statistics

Problem:
- The background error covariance matrix is big: ~107x107.
- We cannot generate enough statistical information to specify this 

many elements.
- We cannot store a matrix this big in computer memory.

To reduce the problem to a manageable size, the matrix 
is split into a product of very sparse matrices, E.g:

B = LT ΣT C Σ L
- L = balance operator (accounts for inter-variable correlations)
- Σ = diagonal (in grid space) matrix of standard deviations
- C = correlation matrix (block diagonal – one block per variable)
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Modelling the Correlations

Three main approaches to modelling the correlations:
- Spectral convolutions (Courtier et al., 1998, QJRMS pp1783…)
- Digital filters (Lorenc 1997 J Met Soc Japan pp339… ; Parrish et 

al. 1997 J Met Soc Japan 359… ; Purser et al. 2001)
- Diffusion equations (Weaver and Courtier, 2001, QJRMS 

pp1815…)



ECMWFSlide 14

Modelling the Correlations – Spectral 
Method

The spectral method uses the equivalence between:
- Convolution with a function h of great-circle distance.

- Multiplication of spectral coefficients by a function of total wavenumber, n.

For h a function of great-circle distance:

Horizontal correlations may be represented by a diagonal 
matrix, H, of coefficients, hn:

- C = HT V H

- Horizontal correlations are homogeneous and isotropic

An advantage of the spectral method is that the 
coefficients, hn, are easily derived:

- hn = (variance for wavenumber n) / (total variance)

, ,
,

( , )n m n m n
m n

h f h f Y λ φ⊗ =∑
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Modelling the Correlations – Spectral 
Method

C=HTVH. V models vertical correlations.
In the ECMWF system, V is block diagonal, with one 
block for each n.

- Non-separable – small horizontal scales have shallow vertical correlation.
- Non-separability is necessary to get both mass and wind correlations 

right (Phillips, 1986 Tellus pp314…). 

Other decompositions are possible. E.g. UKMO use:
- C = PTV H VP
- Where P is a projection onto eigenvectors of the global mean 

vertical correlation matrix
- V is a diagonal, but its diagonal elements vary with latitude.
- H is diagonal, but with different coefficients hn for each vertical 

eigenvector.
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Including Anisotropy in the Spectral 
Method

Dee and Gaspari, 1996:
- If c0(x,y) is a correlation function, then so is c0(g(x),g(y))
- If c0(x,y) is isotropic, then c(x,y)=c0(g(x),g(y)) is generally 

anisotropic.
- We can implement the anisotropic correlation model c(x,y) as a 

two-step process:

horizontal coordinate transform: X = g(x)

Isotropic correlation model: c0(X,Y)

Dee and Gaspari use a simple function of latitude for g(x)
Desroziers (1997, MWR pp3030…) suggests momentum 
coordinates:

( )gf
vkxX ×+=

1
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Including Anisotropy in the Spectral 
Method

(from Dee and Gaspari 1996)
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Vertical Coordinate Transforms

Vertical correlations 
show 3 distinct regions:

Stratosphere

Free Troposphere

Boundary Layer

We could improve the 
description of vertical 
correlations by making 
the boundary-layer top 
and the tropopause 
coordinate surfaces.

Vertical correlations 
show 3 distinct regions:

Stratosphere

Free Troposphere

Boundary Layer

We could improve the 
description of vertical 
correlations by making 
the boundary-layer top 
and the tropopause 
coordinate surfaces.
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Vertical Coordinate Transforms

One possibility is to use a boundary-layer following 
variant of the coordinate introduced by Zhu et al. (1992):

This gives:
- Level KB+1/2 is the boundary-layer top (p=pB).

- Level N+1/2 is the surface (p=p*).

- Levels are evenly spaced in log(p) in the boundary layer.

- Smooth transition between a hybrid pressure coordinate in the lower troposphere, 
and an isentropic coordinate in the upper troposphere.

( )
1 2 1 2

1

1 2 1 2 1 2

1/ 2
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Vertical Coordinate Transforms

Fully Isentropic 
coordinate in the 
stratosphere.

Fully Isentropic 
coordinate in the 
stratosphere.

Hybrid 
pressure/isentropic 
coordinate in the free 
troposphere.

Hybrid 
pressure/isentropic 
coordinate in the free 
troposphere.

Boundary-layer top is a 
coordinate surface.

Boundary-layer top is a 
coordinate surface.

Levels evenly spaced in 
log(p) between pB and p*.

Levels evenly spaced in 
log(p) between pB and p*.
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Including Inhomogeneity in the Spectral 
Method

The spectral method gives us full control over the 
spectral variation of covariance (one matrix for each n), 
but no control over their spatial variation 
(homogeneous).
Specifying covariances in grid space allows us full 
control over the spatial variation of covariances, but no 
control over their spectral variation (one matrix for all n).
By using a wavelet transform, we can compromise 
between these extremes, and gain partial control over 
both spectral and spatial variation.
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Including Inhomogeneity in the Spectral 
Method

A non-orthogonal wavelet transform on the sphere may 
be defined by a set of functions of great-circle distance:

with the property:

We then have a “transform pair”:

Proof:

( ){ }; 1...j j Kψ =r

2ˆ ( ) 1j
j

nψ =∑

,j j j j
j

f f f fψ ψ= ⊗ = ⊗∑

n ( ) 2ˆ ˆ ˆˆ ˆ( ) ( )j j j j j mn mnmnj j jmn

f n f n f fψ ψ ψ
 

⊗ = = = 
 
∑ ∑ ∑
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Including Inhomogeneity in the Spectral 
Method

We arrange for              to pick out bands of 
wavenumbers. For example:

(square-root of a triangle function)
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Wavenumber n
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Wavelet functions: ψ̂j(n) = ( φ̂2
j(n) - φ̂2

j-1(n) )1/2

Including Inhomogeneity
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Including Inhomogeneity in the Spectral 
Method

In physical space, the functions               decay with 
great-circle distance, |r|. 

( )jψ r
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Including Inhomogeneity

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

great-circle distance (km)

Wavelet functions: ψj(|r|)
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Including Inhomogeneity in the Spectral 
Method

The wavelet functions              are localized in 
wavenumber and localized spatially.

The transform property:

means we can regard                  as the coefficient of a 
spatially- and spectrally localized function:

j j
j

f fψ= ⊗∑

( )jψ r

( , )jf λ φ

( )( , ) ( , )jψ λ ϕ λ ϕ′ ′ −r r
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Including Inhomogeneity in the Spectral 
Method

We construct the Wavelet Jb by providing one vertical 
covariance matrix                for each gridpoint and for 
each waveband, j.

accounts for both horizontal and vertical 
correlation. It is roughly equivalent to         in the current 
ECMWF spectral Jb formulation.
This allows us to provide spatial and spectral variation of 
vertical and horizontal background error covariances.

( , )j λ φC

( , )j λ φC

2
n nh V
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Including Inhomogeneity in the Spectral 
Method

The Wavelet Jb defines the control variable to be:

- where

This gives:

The corresponding background error covariance matrix 
is (schematically):

( )T T T T
1 2, , , K=χ χ χ χ…

( )1 2 1 2( , ) ( )j j j b bλ φ ψ− −= ⊗ −χ C Σ x x

1 2 1 2 ( , )b b j j j
j
ψ λ φ − = ⊗  ∑x x Σ C χ

1 2 2 1 2( , )b j j b
j
ψ λ φ

 
 = ⊗  

 
∑B Σ C Σ
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Including Inhomogeneity in the Spectral 
Method

Remember,                     .
So, for a given wavenumber n, B is a weighted average of 
the matrices                  .
At a given gridpoint, B is determined by matrices at 
neighbouring gridpoints (i.e. gridpoints where              is 
not close to zero.

1 2 2 1 2( , )b j j b
j
ψ λ φ

 
 = ⊗  

 
∑B Σ C Σ

2ˆ ( ) 1j
j

nψ =∑

( , )j λ φC

( )jψ r
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Including Inhomogeneity in the Spectral 
Method

Spherical wavelet transform:

North America Equatorial Pacific
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Incorporating Balance

One approach is to provide separate Jb cost functions 
for the balanced and unbalanced components:

- With balanced/unbalanced components determined, for example, 
by projection onto normal modes.

There are two problems with this:
- We still need to describe variable-to-variable correlations in B.
- This Jb cannot be written as χTχ (unless we double the size of the 

control vector), making it difficult to choose a control variable for 
the minimization with good preconditioning properties.

ubu
T
ubbalbbal

T
balbbJ )()()()( 11 xxBxxxxBxx −−+−−= −−



ECMWFSlide 33

Incorporating Balance

A better approach was implemented by Derber and 
Bouttier (1999 Tellus pp195…).
The use a change of variable:

- Subscripts bal and u denote “balanced” and “unbalanced”, with for example, 
T=Tbal+Tu.

The transformed variables are treated univariately.
The balance relationships may be defined analytically, or 
determined statistically (or a bit of both).
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Incorporating Balance

Derber and Bouttier’s balance operator is:

- Pbal is a linearized mass variable, determined by statistical regression 
between spectral coefficients of vorticity and geopotential.

- Tbal (etc.) is determined by statistical regression between geopotential 
and temperature (etc.).

- Tdiv [and (ps)div] are given by statistical regression between temperature 
[and ps] and divergence.

( )
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Nonlinear Balance

DB99 determine Pbal from ζ by regression.
But, the resulting Pbal is nearly indistinguishable from 
that implied by linear balance.
A more accurate balance relationship can be achieved 
using the non-linear balance equation:

Linearizing about the background state gives a linear, 
but flow dependent balance operator.
Nonlinear balance:

- is important in jet entrance/exit regions
- describes some tropical modes well

( )2 . .balP fψ ψ ψ∇ =−∇ ∇ + ×v v k v
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Omega Equation / Richardson’s Equation

DB99 determine Dbal by statistical regression with 
geopotential.
The regression describes Ekman pumping, but little else.
Augmenting the regression with an analytical equation 
for balanced divergence should allow the divergence 
field to be described more accuratey.

- ECMWF now uses a quasi-geostrophic omega equation:

- UKMO is trying Richardson’s equation:
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Incorporating Balance
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Quasi-geostrophic Balance Operator

Control 3dVar 
inner-loop 
analysis 
2001/08/27 
level 33 
divergence.

Divergence at 
level 33 
diagnosed 
from the 
balanced flow.
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Nonlinear and Quasi-Geostrophic
Balance Operator

ECMWF 
analysis 
2001/08/27 
300hPa 
ageostrophic 
wind.

Ageostrophic 
wind at model 
level 33 
diagnosed 
from the 
balanced flow.
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Wind increments at level 31 from a single height observation at 300hPa.

Jb includes:
Nonlinear balance
equation and omega
equation.

Linear balance
only.
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Temperature increments at level 31 from a height observation at 300hPa.

Jb includes:
Nonlinear balance
equation and omega
equation.

Linear balance
only.
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Vorticity increments at level 31 from a height observation at 300hPa.

Jb includes:
Nonlinear balance
equation and omega
equation.

Linear balance
only.
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Divergence increments at level 31 from a height observation at 300hPa.

Jb includes:
Nonlinear balance
equation and omega
equation.

Linear balance
only.
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Flow-dependent σb!An Added Bonus:

Shaded: Diagnosed background 
error for geopotential on model 
level 39.

Contoured:  500hPa height.

Shaded: Diagnosed background 
error for geopotential on model 
level 39.

Contoured:  500hPa height.
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Conclusions

The background error covariance matrix is vitally 
important for any data assimilation method.
Ensembles of analyses provide an attractive method for 
diagnosing statistics of background error.
There is a clear link with ensemble Kalman filtering.
Anisotropy, Inhomogeneity and flow-dependence can all 
be incorporated (in a variety of different ways) without 
necessarily requiring a Kalman filter approach.
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