Background Error Covariance Modelling

Mike Fisher

Outline

- Diagnosing the Statistics of Background Error using Ensembles of Analyses
- Modelling the Statistics in Spectral Space
 - Relaxing constraints of isotropy and homogeneity
- Incorporating Balance

Diagnosing Background Error Statistics

- Problem: We cannot produce samples of background error because we don't know the true state.
- Instead, we must <u>either</u>:
 - Disentangle background errors from the information we do have: innovation statistics.
 - (Hollingsworth and Lönnberg 1986, Tellus 111-136).
- <u>Or</u>:
- Use a surrogate quantity whose error statistics are similar to those of background error.
 - Forecast differences (Parrish and Derber 1992, MWR 1747-1763)
 - Differences between background fields from an ensemble of analyses.

Slide 3

ECMW

Estimating Background Error Statistics from Innovation Statistics

Slide 4

ECMW

Estimating Background Error Statistics from Forecast Differences

- Differences are calculated between forecasts and analyses, or between pairs of forecasts, verifying at the same date/time, but with different initial times.
- Parrish and Derber (1992) describe the method as "a very crude first step"!

ECMV

Slide 5

The method is widely used.

 Suppose we perturb all the inputs to the analysis/forecast system with random perturbations, drawn from the relevant distributions:

- The result will be a perturbed analysis and forecast, with perturbations characteristic of analysis and forecast error.
- The perturbed forecast may be used as the background for the next (perturbed) cycle.
- After several cycles, the system will have forgotten the original initial background perturbations.

ECMV

- Run the analysis system several times with different perturbations, and form differences between pairs of background fields.
- These differences will have the statistical characteristics of background error (but twice the variance).

Advantages:

- The method diagnoses the error characteristics of the actual analysis/forecast system.
- Analysis error and forecast error at any range can be diagnosed.
- Does not impose constraints on the observations used, provided their error characteristics are known.
- Produces global statistics of model variables.
- Produces good estimates in data-sparse regions.

Disadvantages:

- Computationally Expensive.
- Assumes a perfect model. (We could add model error if we knew what it looked like!)
- Assumes observation (SST, etc.) error characteristics are known.
- Danger of feedback. Eg: A noisy analysis system => unbalanced stats => Even noisier analysis system.

Slide 9

ECMW

ECMW

Modelling the Statistics

Problem:

- The background error covariance matrix is big: $\sim 10^7 \times 10^7$.
- We cannot generate enough statistical information to specify this many elements.
- We cannot store a matrix this big in computer memory.
- To reduce the problem to a manageable size, the matrix is split into a product of very sparse matrices, E.g:

$\mathbf{B} = \mathbf{L}^\top \boldsymbol{\Sigma}^\top \mathbf{C} \boldsymbol{\Sigma} \mathbf{L}$

- L = balance operator (accounts for inter-variable correlations)
- Σ = diagonal (in grid space) matrix of standard deviations
- C = correlation matrix (block diagonal one block per variable)

ECMV

Modelling the Correlations

• Three main approaches to modelling the correlations:

- Spectral convolutions (Courtier et al., 1998, QJRMS pp1783...)
- Digital filters (Lorenc 1997 J Met Soc Japan pp339...; Parrish et al. 1997 J Met Soc Japan 359...; Purser et al. 2001)
- Diffusion equations (Weaver and Courtier, 2001, QJRMS pp1815...)

Modelling the Correlations – Spectral Method

• The spectral method uses the equivalence between:

- Convolution with a function h of great-circle distance.
- Multiplication of spectral coefficients by a function of total wavenumber, n.
- For h a function of great-circle distance:

$$h \otimes f = \sum_{m,n} h_n f_{m,n} Y_{m,n}(\lambda, \phi)$$

 Horizontal correlations may be represented by a diagonal matrix, H, of coefficients, h_n:

ECMW

- $\mathbf{C} = \mathbf{H}^{\mathsf{T}} \mathbf{V} \mathbf{H}$
- Horizontal correlations are homogeneous and isotropic
- An advantage of the spectral method is that the coefficients, h_n, are easily derived:
 - h_n = (variance for wavenumber n) / (total variance)

Modelling the Correlations – Spectral Method

- C=H^TVH. V models vertical correlations.
- In the ECMWF system, V is block diagonal, with one block for each n.
 - Non-separable small horizontal scales have shallow vertical correlation.
 - Non-separability is necessary to get both mass and wind correlations right (Phillips, 1986 Tellus pp314...).
- Other decompositions are possible. E.g. UKMO use:
 - $C = P^{\mathsf{T}}V H VP$
 - Where P is a projection onto eigenvectors of the global mean vertical correlation matrix
 - V is a diagonal, but its diagonal elements vary with latitude.
 - H is diagonal, but with different coefficients h_n for each vertical eigenvector.

Including Anisotropy in the Spectral Method

- Dee and Gaspari, 1996:
 - If $c_0(\underline{x},\underline{y})$ is a correlation function, then so is $c_0(\underline{g}(\underline{x}),\underline{g}(\underline{y}))$
 - If $c_0(\underline{x},\underline{y})$ is isotropic, then $c(\underline{x},\underline{y})=c_0(\underline{g}(\underline{x}),\underline{g}(\underline{y}))$ is generally anisotropic.
 - We can implement the anisotropic correlation model c(<u>x</u>,<u>y</u>) as a two-step process:
 - horizontal coordinate transform: <u>X</u> = g(<u>x</u>)
 - Isotropic correlation model: c₀(X,Y)
- Dee and Gaspari use a simple function of latitude for g(x)
- Desroziers (1997, MWR pp3030...) suggests momentum coordinates:

$$\underline{\mathbf{X}} = \underline{\mathbf{x}} + \frac{1}{f} \left(\underline{\mathbf{k}} \times \underline{\mathbf{v}}_g \right)$$

Including Anisotropy in the SpectralMethodZonally symmetric anisotropic correlation model

ECMW

Vertical Coordinate Transforms

Vertical Coordinate Transforms

One possibility is to use a boundary-layer following variant of the coordinate introduced by Zhu et al. (1992):

$$p_{k+1/2} = \begin{cases} \frac{a_{k+1/2} + b_{k+1/2} p_B}{c_{k+1/2} \left(T_{k+1/2}\right)^{-\frac{1}{K}} + d_{k+1/2}} & \text{for } k < K_B \\ p_B \left(\frac{p_*}{p_B}\right)^{\frac{k-K_B}{N-K_B}} & \text{for } k \ge K_B \end{cases}$$

This gives:

- Level $K_B + 1/2$ is the boundary-layer top $(p=p_B)$.
- Level N+1/2 is the surface $(p=p_*)$.
- Levels are evenly spaced in log(*p*) in the boundary layer.
- Smooth transition between a hybrid pressure coordinate in the lower troposphere, and an isentropic coordinate in the upper troposphere.

ECMW

- The spectral method gives us full control over the spectral variation of covariance (one matrix for each n), but no control over their spatial variation (homogeneous).
- Specifying covariances in grid space allows us full control over the spatial variation of covariances, but no control over their spectral variation (one matrix for all n).
- By using a wavelet transform, we can compromise between these extremes, and gain partial control over both spectral and spatial variation.

A non-orthogonal wavelet transform on the sphere may be defined by a set of functions of great-circle distance:

$$\left\{ \boldsymbol{\psi}_{j}\left(\left|\mathbf{r}\right|\right);\,j=1...K\right\}$$

with the property:

$$\sum_{j} \hat{\psi}_{j}^{2}(n) = 1$$

• We then have a "transform pair":

Proof:
$$f_j = \psi_j \otimes f, \quad f = \sum_j \psi_j \otimes f_j$$

$$\left(\widehat{\sum_{j}\psi_{j}\otimes f_{j}}\right)_{mn}=\sum_{j}\hat{\psi}_{j}(n)\left(\hat{f}_{j}\right)_{mn}=\sum_{j}\hat{\psi}_{j}^{2}(n)\hat{f}_{mn}=\hat{f}_{mn}$$

EC

• We arrange for $\hat{\psi}_j(n)$ to pick out bands of wavenumbers. For example:

$$\hat{\psi}_{j}(n) = \left(\frac{n - N_{j-1}}{N_{j} - N_{j-1}}\right)^{\frac{1}{2}} \qquad N_{j-1} < n \le N_{j}$$
$$\hat{\psi}_{j}(n) = \left(\frac{N_{j+1} - n}{N_{j+1} - N_{j}}\right)^{\frac{1}{2}} \qquad N_{j} < n < N_{j+1}$$
$$\hat{\psi}_{j}(n) = 0 \qquad \text{otherwise}$$

(square-root of a triangle function)

Including Inhomogeneity

• In physical space, the functions $\psi_j(|\mathbf{r}|)$ decay with great-circle distance, $|\mathbf{r}|$.

Including Inhomogeneity

Wavelet functions: $\psi_i(|\mathbf{r}|)$

• The wavelet functions $\psi_j(|\mathbf{r}|)$ are localized in wavenumber and localized spatially.

• The transform property:
$$f = \sum_{j} \psi_{j} \otimes f_{j}$$

means we can regard $f_j(\lambda, \phi)$ as the coefficient of a spatially- and spectrally localized function:

$$\psi_j \left(\left| \mathbf{r}(\lambda', \varphi') - \mathbf{r}(\lambda, \varphi) \right| \right)$$

- We construct the Wavelet J_b by providing one vertical covariance matrix $C_j(\lambda, \phi)$ for each gridpoint and for each waveband, *j*.
- $C_j(\lambda, \phi)$ accounts for both horizontal and vertical correlation. It is roughly equivalent to $h_n^2 V_n$ in the current ECMWF spectral J_b formulation.
- This allows us to provide spatial and spectral variation of vertical and horizontal background error covariances.

• The Wavelet J_b defines the control variable to be:

$$\boldsymbol{\chi}^{\mathrm{T}} = \left(\boldsymbol{\chi}_{1}^{\mathrm{T}}, \boldsymbol{\chi}_{2}^{\mathrm{T}}, \dots, \boldsymbol{\chi}_{K}^{\mathrm{T}}\right)$$

- where
$$\boldsymbol{\chi}_j = \mathbf{C}_j^{-1/2}(\lambda,\phi) \left(\boldsymbol{\psi}_j \otimes \boldsymbol{\Sigma}_b^{-1/2}(\mathbf{x}-\mathbf{x}_b) \right)$$

• This gives:
$$\mathbf{x} - \mathbf{x}_b = \mathbf{\Sigma}_b^{1/2} \sum_j \psi_j \otimes \left[\mathbf{C}_j^{1/2}(\lambda, \phi) \boldsymbol{\chi}_j \right]$$

The corresponding background error covariance matrix is (schematically):

$$\mathbf{B} = \mathbf{\Sigma}_{b}^{1/2} \left(\sum_{j} \psi_{j}^{2} \otimes \left[\mathbf{C}_{j} (\lambda, \phi) \right] \right) \mathbf{\Sigma}_{b}^{1/2}$$

ECMV

$$\mathbf{B} = \mathbf{\Sigma}_{b}^{1/2} \left(\sum_{j} \psi_{j}^{2} \otimes \left[\mathbf{C}_{j}(\lambda, \phi) \right] \right) \mathbf{\Sigma}_{b}^{1/2}$$

- Remember, $\sum_{j} \hat{\psi}_{j}^{2}(n) = 1$.
- So, for a given wavenumber n, B is a weighted average of the matrices $\mathbf{C}_{i}(\lambda,\phi)$.
- At a given gridpoint, B is determined by matrices at neighbouring gridpoints (i.e. gridpoints where $\Psi_j(|\mathbf{r}|)$ is not close to zero.

Spherical wavelet transform:

ECMW

Slide 31

correlation

One approach is to provide separate J_b cost functions for the balanced and unbalanced components:

$$J_b = (\mathbf{x} - \mathbf{x}_b)_{bal}^T \mathbf{B}_{bal}^{-1} (\mathbf{x} - \mathbf{x}_b)_{bal} + (\mathbf{x} - \mathbf{x}_b)_u^T \mathbf{B}_u^{-1} (\mathbf{x} - \mathbf{x}_b)_u$$

- With balanced/unbalanced components determined, for example, by projection onto normal modes.
- There are two problems with this:
 - We still need to describe variable-to-variable correlations in B.
 - This J_b cannot be written as χ^Tχ (unless we double the size of the control vector), making it difficult to choose a control variable for the minimization with good preconditioning properties.

- A better approach was implemented by Derber and Bouttier (1999 Tellus pp195...).
- The use a change of variable:

$$\begin{pmatrix} \zeta_{bal} \\ D_u \\ T_u \\ (p_s)_u \end{pmatrix} = \mathbf{L} \begin{pmatrix} \zeta \\ D \\ T \\ p_s \end{pmatrix}$$

- Subscripts *bal* and *u* denote "balanced" and "unbalanced", with for example, $T=T_{bal}+T_{u}$.
- The transformed variables are treated univariately.
- The balance relationships may be defined analytically, or determined statistically (or a bit of both).

ECMW

Derber and Bouttier's balance operator is:

$$\begin{aligned} \zeta_{bal} &= \zeta \\ D_u &= D - D_{bal} \left(P_{bal} (\zeta) \right) \\ T_u &= T - T_{bal} \left(P_{bal} (\zeta) \right) - T_{div} (D_u) \\ (p_s)_u &= p_s - (p_s)_{bal} \left(P_{bal} (\zeta) \right) - (p_s)_{div} (D_u) \end{aligned}$$

- P_{bal} is a linearized mass variable, determined by statistical regression between spectral coefficients of vorticity and geopotential.
- T_{bal} (etc.) is determined by statistical regression between geopotential and temperature (etc.).
- T_{div} [and $(p_s)_{div}$] are given by statistical regression between temperature [and p_s] and divergence.

ECMW

Nonlinear Balance

- DB99 determine P_{bal} from ζ by regression.
- But, the resulting P_{bal} is nearly indistinguishable from that implied by linear balance.
- A more accurate balance relationship can be achieved using the non-linear balance equation:

$$\nabla^2 P_{bal} = -\nabla \cdot \left(\mathbf{v}_{\psi} \cdot \nabla \mathbf{v}_{\psi} + f \, \mathbf{k} \times \mathbf{v}_{\psi} \right)$$

ECMV

- Linearizing about the background state gives a linear, but flow dependent balance operator.
- Nonlinear balance:
 - is important in jet entrance/exit regions
 - describes some tropical modes well

Omega Equation / Richardson's Equation

- DB99 determine D_{bal} by statistical regression with geopotential.
- The regression describes Ekman pumping, but little else.
- Augmenting the regression with an analytical equation for balanced divergence should allow the divergence field to be described more accuratey.
 - ECMWF now uses a quasi-geostrophic omega equation:

$$(\sigma \nabla^2 + f_0^2 \frac{\partial^2}{\partial p^2})\omega = -2\nabla \cdot \mathbf{Q}$$

- UKMO is trying Richardson's equation:

$$\gamma \frac{\partial}{\partial z} \left\{ p \left[\frac{\partial w}{\partial z} + \nabla_z \cdot \mathbf{v}_{bal} - \frac{Q}{TC_p} \right] \right\} = \frac{\partial p}{\partial z} \nabla_z \cdot \mathbf{v}_{bal} - \frac{\partial \mathbf{v}}{\partial z} \cdot \nabla_z p$$

ECMV

Quasi-geostrophic Balance Operator

Control 3dVar inner-loop analysis 2001/08/27 level 33 divergence.

Divergence at level 33 diagnosed from the balanced flow.

Slide 38

ECMW

Nonlinear and Quasi-Geostrophic Balance Operator

ECMWF analysis 2001/08/27 300hPa ageostrophic wind.

Ageostrophic wind at model level 33 diagnosed from the balanced flow.

Wind increments at level 31 from a single height observation at 300hPa.

Temperature increments at level 31 from a height observation at 300hPa.

Vorticity increments at level 31 from a height observation at 300hPa.

Divergence increments at level 31 from a height observation at 300hPa.

An Added Bonus: Flow-dependent σ_{b} !

ECMWF Analysis VT:Saturday 1 February 2003 12UTC 500hPa geopotential height

Shaded: Diagnosed background error for geopotential on model level 39.

Contoured: 500hPa height.

Conclusions

- The background error covariance matrix is vitally important for any data assimilation method.
- Ensembles of analyses provide an attractive method for diagnosing statistics of background error.
- There is a clear link with ensemble Kalman filtering.
- Anisotropy, Inhomogeneity and flow-dependence can all be incorporated (in a variety of different ways) without necessarily requiring a Kalman filter approach.

