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Scientific Basis for Ensemble
Prediction

In a nonlinear dynamical
system, the finite-time growth
of initial uncertainties is flow
dependent.
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EPS appearing on Dutch TV
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Value of EPS over high-res deterministic forecast
for financial weather-derivative tfrading based
on Heathrow temperature (Roulston and Smith,
London School of Economics, 2003)
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EPS Systems Start to Lack Spread After D+5
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Figure 6. May-June-July 2002 average RMS error of the ensemble-mean (solid lines) and ensemble standard deviation (dotted lines) of the EC-
EPS (green lines), the MSC-EPS (red lines) and the NCEP-EPS (black lines). Values refer to the 500 hPa geopotential height over the northern
hemisphere latitudinal band 20°-80°N.



Lack of Spread Particularly Noticeable
for Extended-range Prediction....

NINO3 SST s errors
176 start dates iom 19870101 o 20010601

ECMWF Coupled Model

...due to inadequate representation of
model uncertainty in the ensemble
formulation



Why are models uncertain?

We know the equations of
weather and climate well as
PDEs — the uncertainties arise
in converting these PDEs to

ODEs



Parametrisations motivated by statistical mechanics
(eg molecular diffusion), but...
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Wavenumber spectra of zonal and
meridional velocity composited from
three groups of flight segments of
different lengths. The three types of

symbols show results from each group.
The straight lines indicate slopes of —3
and —5/3. The meridional wind spectra
are shifted one decade to the right.
(after Nastrom et al, 1984).
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...there is no scale separation between resolved and
unresolved scales at NWP truncations




Representations of model uncertainty:
= Multi-model ensembles

=Perturbed parameters

sStochastic physics

sStochastic-Dynamic Sub-grid models

*Forced and parametric singular
vectors
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DEMETER Multi-model ensemble system

/ global coupled ocean-atmosphere climate models

Partner Atmosphere Oceadn

HOPE

? member ensembles
OPA 8.3
OPA 8.1 ERA-40 initial conditions
OPA 8.3 SST and wind perturbations
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6 months hindcasts
HadCM3

Hindcast production for: 1987-1999 (1958-2001)



Observed Frequency

Observed Frequency

Reliability Diagram

0.049

1.0
Brier (Skill) Score: 0.238 ( 0.048)

B(S)S_Reliability: 0.025( 0.902)
B(S)S_Resclution: 0.037 ( 0.147)
08 Uncertainty: 0.250

06
04
Event: 2m Temperature anom. > 0.00 sigma
02 Area: Tropics
Model: CERFACS
Start dates: May / 1887-1889
Avg. over FC peried: 2-4 months (JJA)
0.0
0.0 02 04 06 08
Forecast Probability
Reliability Diagram
1.0

Brier (Skill) Score: 0.231 ( 0.075)

B(S)S_Reliability: 0.020 { 0.921)

B(S)S_Resolution: D.038 ( 0.153)
0.8 - Uncertainty: 0.250

0.075
0.9
0

06
04
Event: 2m Temperature anom. > 0.00 sigma
02 Area: Tropics
Model: LODYC
Start dates: May / 1987-1999
Avg. over FC period: 2-4 months (JJA)
0.0

0.0 02 08

04 06
Forecast Probability

Reliability Diagram

0.058
0.9
0.15

Brier (Skill) Score: 0.236 ( 0.056)
B(S)S_Reliability: 0.024 ( 0.904)
B(S)S_Resoluticn: 0.028( 0.151)
Uncertainty: 0.250

Event: 2m Temperature anom. > 0.00 sigma
Area: Tropics

Model: CNRM

Start dates: May / 1 887-1989

Avg. over FC pericd: 2-4 months (JJA)

1.0 0 02 04 0.6 038 1.0
Forecast Probability

Reliability Diagram

-0.055

Brier (Skill) Score: 0.264 ( -0.055)
B(S)S_Reliability: 0.041 ( 0.828)
B(S)S_Resolution: 0.027 { 0.107)
Uncertainty: 0.250

Event: 2m Temperature anom. > 0.00 sigma

Area: Tropics

Model: MPI

Start dates: May / 1987-1999

Avg. over FC peried: 2-4 months (JJA)

1.0 1.0 02 04 06 08 10
Forecast Probability

Reliability Diagram

0.099
0.9

Brier (Skill) Score: D.225( 0.099)
B(S)S_Reliability:  0.015( 0.923)
B(S)S_Resolution: 0.044 [ D.176)
Uncertainty: 0.250

Event: 2m Temperature anom. > 0.00 sigma
Area: Tropics

Model: ECMWF_assim

Start dates: May / 1987-1989

Avg. over FC period: 2-4 months (JJA)

02 04

06 038 1.0
Forecast Probability

Reliability Diagram

0.068
0.9
0.16

Brier (Skill) Score: 0.232( 0.068)
B(S)S_Reliability: 0D.024 ( 0.803)
B(S)S_Resolution: 0.041 { 0.184)
Uncertainty: 0.250

Event: 2m Temperature anom. > 0.00 sigma
Area: Tropics

Model: UKMO

Start dates: May / 1987-1989

Avg. over FC period: 2-4 months (JJA)

02 04 06 08 1.0
Forecast Probability

Reliability Diagram

-0.007

Brier (Skill) Score: 0.252 ( -0.007)
B(S)S_Reliability: 0.020 ( 0.886)
B(S)S_Resclution: 0.027 ( 0.107)
Uncertainty: 0.250

Event: 2m Temperature anom. > 0.00 sigma

Area: Tropics

Model: INGV

Start dates: May / 19871898

Avg. over FC period: 2-4 months (JJA)

0 02 04 0.6 08 1.0
Forecast Probability

Reliability Diagram

0.222
0.9

Brier (Skill) Score: 0.195( 0.222)
B(S)S_Reliability:  0.001 ( 0.994)
B(S)S_Resolution: 0.057 { 0.227)
Uncertainty: 0.250

Event: 2m Temperature anom. = 0.00 sigma
Area: Tropics

Model: DEMETER Il

Start dates: May / 1987-1899

Avg. over FC pericd: 2-4 months (JJA)

1.0 02 04 0.6
Forecast Probability

08 1.0




Reliability Diagram

Forecast Probability

1.0 r
Brier (Skill) Score: 0.275 ( -0.088) 0 099 Brier (Skill) Score: 0.281 ( -0.126) 0 'I 26
B(S)S Relabiity: ©0.035( 08s5) . B(S)S_Reliability: 0.037 ( 0.850) .
B(S)S_Resolution: 0.010( 0.041) B(S)S_Resolution: 0.008 ( 0.024)
0.8 Uncertainty: 0.250 Uncertainty: 0.250 0 8
.
oy
8
S 06
o
2
[
he)
2
o 04
e
o
Event: 2m Temperature anom. > 0.00 sigma Event: 2m Temperature anom. > 0.00 sigma
02 Area: Europe Area: Europe
Model: CERFACS Model: CNRM
Start dates: May /1 887-1289 Start dates: May / 1987-1999
Avg. over FC pericd: 2-4 months (JJA) Avg. over FC peried: 2-4 months (JJA)
0.0 .| -
0.0 02 04 0.6 08 1.0 1.0 02 04 06 08 10
Forecast Probability Forecast Probability
Reliability Diagram Reliability Diagram
1.0 r
Brier (Skill) Score: 0.273 ( -D.084) Brier (Skill) Score:  0.275 ( -0.098) 99
B(S)S_Reliability: 0.080 ( 0.882) M B(S)S_Reliability: 0.035( 0.861) - .
B(S)S_Resolution: 0.006 ( 0.024) B(S)S_Resolution: 0.010( 0.040)
0.8 Uncertainty: 0.250 Uncertainty: 0.250
g
S
S 06
o
2
[T
o
:
g 04
el
@]
Event: 2m Temperature anom. > 0.00 sigma Event: 2m Temperature anom. > 0.00 sigma
02 Area: Europe Area: Europe
Model: LODYC Model: MPI
Start dates: May /1 G87-1588 Start dates: May / 1987-1999
Avg. over FC pericd: 2-4 months (JJA) Avg. over FC period: 2-4 months (JJA)
0.0 .| .|
0.0 02 04 0.6 08 1.0 1.0 02 04 06 08 1.0

Forecast Probability

Brier (Skill) Score: 0.254 (-0.018)
B(S)S_Reliability:
B(S)S_Resolution
Uncertainty: 0.250

02

Brier (Skill) Score: D.268 ( -0.075)
B(S)S_Reliability:
B(S)S_Resolution
Uncertainty: 0.250

02

0.019( 0D.825)
0.015( 0.059)

0.027 ( 0.B81)
0.009 ([ 0.034)

Reliability Diagram

Event: 2m Temperature anom. > 0.00 sigma

Area: Eurcpe

Model: ECMWF_assim

Start dates: May / 1987-1999

Avg. over FC period: 2-4 months (JJA)

04 06
Forecast Probability

Reliability Diagram

Event: 2m Temperature anom. > 0.00 sigma

Area: Europe
Model: UKMO

Start dates: May / 1987-1988

Avg. over FC period : 2-4 months (JJA)

04 06 08 1.0
Forecast Probability

08 1.0

Reliability Diagram

-0.149
0.8

Brier (Skill) Score: 0.287 (-0.148)
B(S)S_Reliability: 0.048 ( 0.816)
B(S)S_Resolution: 0.008 ( 0.035)
Uncertainty: 0.250

Event: 2m Temperature anom. > 0.00 sigma

Area: Europe

Model: INGV

Start dates: May / 1987-1999

Avg. over FC period - 2-4 months (JJA)

i
1.0 0.2 04 0.6 08 1.0
Forecast Probability
Reliability Diagram
In

Brier (Skill) Score: 0.225( 0.081)

B(S)S_Reliability: 0.004 { 0.983)

B(S)S_Resolution: 0.018( 0.078)
i~ Uncertainty: 0.250

0.061
0.9

Event: 2m Temperature anom. = 0.00 sigma
Area: Europe

Model: EMETER Il

Start dates: May /1887-1999

Avg. over FC period: 2-4 months (JJA)

).0 02 04 0.6 08 1.0
Forecast Probability




=
[®]
=
5}
=1
=
o}
—
(T
=
o}
S
o}
%]
0
(@]

<
o

=
~

Reliability Diagram

0.170
0.959
0.211

Brier (Skill) Score: 0.207 ( 0.170)
B(S)S_Reliability: 0.010( 0.858)
B(S)S_Resclution: 0.053( D.211)
Uncertainty: 0.250

Event: 2m Temperature anom. > 0.00 sigma
Area: Tropics

Model: ECMWF_grande

Start dates: May / 1587-1959

Avg. over FC period: 2-4 months (JJA)

04 06 08
Forecast Probability

Observed Frequency

=
(=]

=
~

Reliability Diagram
0.222

0.994
0.227

Brier (Skill) Score: 0.195( D.222)
B(S)S_Reliability: 0.001 ( D.884)
B(S)S_Resolution: 0.057 ( D.227)
Uncertainty: 0.250

Event: 2m Temperature anom. > 0.00 sigma
Area: Tropics

Model: DEMETER Il

Start dates: May / 1987-15988

Avg. over FC period : 2-4 months (JJA)

04 06 038
Forecast Probability




hitp://www.ecmwif.int

- Demeter - Mozilla {Build ID: 2002121607}

Home Your Room LI][iI'I Contact Feedback 3Site g; Search:

About Us Products Services Research Publications Mews&Events
F

ECMWF Data Server

Forecasts Select Experiment

Hindcasts [~ CERFACS [T ECMWF [~ INGV [~ LODYC [~ Météo France [~ Max Planck Institute
Verificati

entications I UK Met Office

Decade Select All or Select Hone

1380

1330 Select Starting date

all

= [~ 1990-02 [~ 1990-05 [~ 1990-08 [~ 1990-11 [~ 1991-02 [~ 1991-05 [~ 1991-08 [~ 1991-11
Type of level [~ 1992-02 [~ 1992-05 [~ 1992-08 [~ 1992-11 [~ 1993-02 [~ 1993-05 [~ 1993-08 [~ 1993-11
Pressure levels [~ 1994-02 [~ 1994-05 [~ 1994-08 [~ 1994-11 [~ 1995-02 [~ 1995-05 [~ 1995-08 [~ 1995-11
Surface [~ 1996-02 [ 1996-05 [~ 1996-08 [~ 1996-11 [~ 1997-02 [ 1997-05 [~ 1997-08 [~ 1997-11

See also... Select All or Select None

Data Services
ECMWF Archive Select Level and Parameter

I
=
=
1]
=
=
=]
12
=

Datasets Geopotential
Demeter Temperature

ERA15 =

U velocity
Personal ¥ velocity
Your Requests Specific humidity [~

mie el
i e B e e
i B e e e

Select All or Select Hone

Select Forecast month
1234 s &6

Select All or Select Hone

Select Ensemble member
o1 2 3 a[ a[ 6[ 7[ &

Select All or Select Hone




Met Office Coupled Model ECMWF Coupled Model

ST rms errors
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Whilst multi-model ensembles
provide a reasonable pragmatic
approach to the problem of
representing model error, this
approach lacks clear scientific
underpinning.

: fically. | " el
perturbed parameter) ensembiles,
there is manifestly no representation
of common model deficiencies (eg

inadequate variability associated



Calculate exact PDF of sub-grid  Glenn Shutts (personal communication)

temperature tendencies in a

coarse-grained (~50km) grid box " st.dev.= 16.78 K/day
based on output from a cloud-
resolving (~1km) model freated as g Weakly

R ! ] convecting

PDFs are constrained such that
parametrised tendencies based
on coarse-grain input fields lie
within boxes of width 6K/day.
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ECMWEF stochastic physics scheme

X=D+P+¢cP

¢ 1S a stochastic variable, drawn from a uniform

*~ * >
intervals of 6hrs and over 10x10 lat/long boxes
Buizza, Miller and Palmer, 1999

Stochastic forcing « parametrised tendenc



Stochastic Physics has a positive impact on
medium-range EPS skill

Area under ROC curve. E: precip>40mm/day.
Winter- top curves. Summer — bottom curves

1

0.9° ' Stoch phys

0.8 : T
R / No stoch phys
7] i "‘.r"..., ., e
E 0.7 | " \'\_ 7 tu

0.5-

0.4 - . - | .

0 1 2 3 4 5 6
Day

Buizza et al, 1999
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Stochastic physics has an impact on the mean

Systematic
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Could stochastically sampling the probability
distribution of the sub-grid tendency, rather
than always sampling the mode, make a
difference? Yes if atmosphere 1s nonlinear!!

Eg 1) Ball-bearing in a skewed potential well

|\ _—

o

. AN

Me':an state without Mean state with noise
noise




Eg 2) Lorenz(1963) in an EOF basis

a,=2.3a,—6.2a,—-0.49a,a, —0.57a,a,
a, =—62-2.7a,+0.49a’ —0.49a; +0.14q,a,

a, =—0.63a, —13a, +0.43a,a, +0.49a,a,

31 EOF only explains 4% of variance
(Selten, 1995) .

Parametrise 1t?



Lorenz(1963) in a truncated EOF basis
with parametrisation of a,

a,=2.3a,-6.2a, —0.49a,a, —0.57a,a,
=—-62-2.7a, +0.49a’ —0.49q; +0.14q,a,

J(a,,a,)

Good as a short-range forecast model (using
L63 as truth), but exhibits major systematic
errors compared with L63, as, by Poincare-
Bendixon theorem, the system cannot exhibit
chaotic variability — system collapses onto a
point attractor.



Stochastic-Lorenz(1963) in a
truncated EOF basis

a,=2.3a,—6.2a, —0.49a,a, —0.57a,a,
a, =—62—-2.7a, +0.49a; —0.49a; +0.14a,a,

a, =p

Stochastic noise



Lorenz attractor

Truncated Stochastic-
Lorenz attractor —
weak noise

Truncated Stochastic-
Lorenz attractor

Error in mean
and variance

Palmer, 2001
(acknowledgment to
Frank Selten)



Stochastic-Dynamic Sub-Grid Models

1. Embed 2D Cloud Resolving Models in GCM
(eg Grabowski, 2001; Randall, 2003).
“superparametrisation”. Very expensive!!

EG Probability of an “on”cell proportional to CAPE and number of
adjacent “on” cells — “on” cells feedback to the resolved flow

(Palmer; 1997)



Ising Model (for Ferromagnetism) — Stochastic Cellular
Automaton Model- only nearest neighbour interaction

Above Curie Point

Below Curie Point

hitp://bartok/ucsc.ed
u/peter/javal/ising/ke
ep/ising.html
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Coarse-grained stochastic models for tropical

convection and climate

Boualem Khouider!, Andrew J. Majdat*s, and Markeos &. Katsoulakis?

Courant Irstituts of Mathematizal Sclences and *Center for Atmosph ere and Ocean Sclences, New York Unbeersity, New York, NY 10012 and "Department

of Mathermatlcs and Statistis, Unhersity of Massachusetts, Amberst, MA 01002

Contributed by Andrew 1. Majda, August 4, 2003

Prototype coarse-gralned stochastic parametrizations for the In-
teractlon with unresolyed features of troplcal convectlon are
developed here. Thasa coarse-gralnad stochastic paramatrizations
Involve systematically derrsed birth/death processes with low
computational owverhead that allew for direct Interaction of the
coarse-gralned dynamical varlables with the smaller-scale unre-
solved fluctuations. It 1s established here for an Ideallzed prototype
climate scenarle that, In sultable regimes, these coarse-gralned
stochastic parametrizations can slgniflcantly Impact the dimatol-
ogy as well a5 strongly Increass the wave fluctuations about an
Ideallzed climatology.

he current practical models for prediction of both weather

and climate involve general circulation models (GCMs)
where the physical eqmations for these extremely complex
[lows are discretived in space and time and the effects of
unresolved processes are parametrized according 1o various
recipes. With the current generation of supercomputers, the
smallest possible mesh spacings are =~50-100 km for short-
term wiather simnlations and of order 200-300 km for short-
term climate simulations. There are many important physical
processes thal are unresolved in such simulations such as the
mesoscale sea-ice cover, the cloud cover in subtropical bound-
ary layers, and deep convective clouds in the tropics. An

this article, one horizontal spatial dimension along the equator
in the east—west direction is assumed [or simplicity in notation
and explanation. As mentionad above, the typical mesh spac-
ing in a 3CM is coarse with Av ranging from 50 (o 230 km
depending on the time duration of the simnlation. On the other
hand, obscrvationally, CIM is known (o have significant fluec-
mations on a horizontal spatial scale on the order of 1 km. the
microscopic scale here, with changes in CIN attributed 1o
different mechanisms in the turbulent bonndary layer stch
as gusl fronts, gravity waves, and mrbulent flucimations in
equivalent potential emperamre (3. In ref. 1 it was proposed
that all these different microscopic physical mechanisms and
their interaction, which increase and decrease CIN. are oo
complex o model in detail in a coarse-mesh GCM parame-
trization and instead. as in statistical mechanics, should be
modeled by a simple order parameter, oy laking only two
discrete values:

=1 ata site if convection is inhibited (a CIN site)

— . A . [1]
orp = Oata site il there is potential for deep convection

[a potential for deep convection (PAC) site].

The value of CIN at a given coarse-mesh point is determined

e

APPLIED
MATHEMATICS




It is envisaged that a
stochastic-dynamic
cellular-automaton-based
sub-grid model will

replace the current

stochastic physics scheme
iIn the EPS in 2004/2005.



SV representation of 5x(t)
model uncertainty

M (t,¢,

T

forcing f

[” M’ (s, )M(r t)dsdr] f=Af Stochastic Optimals eg

Farrell and Ioannou, 1996
)

Quasi-constant forcing.

T
jM(S,t)dS j M(s,t)ds | f =A f  Barkmeijer, Iversen and
o fo Palmer, 2003

+ parametric singular vectors (collaboration with MIT)

e

A4



Conclusions

Based on seasonal prediction studies, forecast probability
distributions from multi-model ensembles are intrinsically more
reliable than those from single-model ensembles. Multi-model
ensembles provide a useful pragmatic approach to the
representation of model uncertainty.

A more complete representation of unresolved and poorly-
resolved scales in specific weather/climate models may be
achievable using (computationally cheap) stochastic-
dynamic sub-grid models.

Unlike the multi-model approach, stochastic-dynamic
parametrisations can impact (and hence potentially reduce)
model systematic error (eg in long-standing systematic errors
such as MJO and blocking frequency).

SV technigues could be adapted to determine sensitive
aspects of model uncertainty
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