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Scientific Basis for Ensemble 
Prediction

In a  nonlinear dynamical 
system, the finite-time growth 
of initial uncertainties is flow 
dependent.
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ECMWF EPS initial perturbations evolve 
to the leading major axes of the pdf of 
short-range forecast error (singular 
vectors of M).



EPS appearing on Dutch TV 



Value of EPS over high-res deterministic forecast 
for financial weather-derivative trading based 
on Heathrow temperature (Roulston and Smith, 
London School of Economics, 2003)



EPS Systems Start to Lack Spread After D+5

error

spread

Figure 6. May-June-July 2002 average RMS error of the ensemble-mean (solid lines) and ensemble standard deviation (dotted lines) of the EC-
EPS (green lines), the MSC-EPS (red lines) and the NCEP-EPS (black lines). Values refer to the 500 hPa geopotential height over the northern 

hemisphere latitudinal band 20º-80ºN.



Lack of Spread Particularly Noticeable 
for Extended-range Prediction….

error

spread

ECMWF Coupled Model

…due to inadequate representation of 
model uncertainty in the ensemble 
formulation



Why are models uncertain?

We know the equations of 
weather and climate well as 
PDEs – the uncertainties arise 
in converting these PDEs to 
ODEs



Parametrisations motivated by statistical mechanics 
(eg molecular diffusion), but…

Wavenumber spectra of zonal and 
meridional velocity composited from 
three groups of flight segments of 
different lengths. The three types of 
symbols show results from each group. 
The straight lines indicate slopes of –3 
and –5/3. The meridional wind spectra 
are shifted one decade to the right.
(after Nastrom et al, 1984).

…there is no scale separation between resolved and 
unresolved scales at NWP truncations



Representations of model uncertainty:

Multi-model ensembles

Perturbed parameters

Stochastic physics

Stochastic-Dynamic Sub-grid models

Forced and parametric singular 
vectors



Development of a
European Multi-Model Ensemble System

for
Seasonal to Interannual Prediction
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DEMETER Multi-model ensemble system

• 7 global coupled ocean-atmosphere climate models

Partner Atmosphere Ocean 

ECMWF IFS HOPE 

LODYC IFS OPA 8.3 

CNRM ARPEGE OPA 8.1 

CERFACS ARPEGE OPA 8.3 

INGV ECHAM-4 OPA 8.2 

MPI ECHAM-5 MPI-OM1

UKMO HadCM3 HadCM3

 

• Hindcast production for: 1987-1999 (1958-2001)

9 member ensembles

ERA-40 initial conditions

SST and wind perturbations 

4 start dates per year

6 months hindcasts
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http://www.ecmwf.int



Met Office Coupled Model ECMWF Coupled Model
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Whilst multi-model ensembles 
provide a reasonable pragmatic 
approach to the problem of 
representing model error, this 
approach lacks clear scientific 
underpinning. 

Specifically, in multi-model (or 
perturbed parameter) ensembles, 
there is manifestly no representation 
of common model deficiencies (eg 
inadequate variability associated 

ith bl ki  MJO  i t  th )



Calculate exact PDF of sub-grid 
temperature tendencies in a 
coarse-grained (∼50km) grid box 
based on output from a cloud-
resolving (∼1km) model treated as 
“truth”.

PDFs are constrained such that 
parametrised tendencies based 
on coarse-grain input fields lie 
within boxes of width 6K/day. 

st.dev.= 22.1 K/day st.dev.= 38.9 K/day

Moderately
convecting

Strongly 
convecting

Weakly  
convecting

st.dev.= 16.78 K/day

Width of pdf ∝ parametrised tendency

Glenn Shutts (personal communication)



PPDX ε++=

ECMWF stochastic physics scheme

ε is a stochastic variable, drawn from a uniform 
distribution in [-0.5, 0.5], constant over time 
intervals of 6hrs and over 10x10 lat/long boxes

Buizza, Miller and Palmer, 1999

Stochastic forcing ∝ parametrised tendenc



Stochastic Physics has a positive impact on 
medium-range EPS skill 

Area under ROC curve. E: precip>40mm/day. 
Winter- top curves. Summer – bottom curves

Stoch phys

No stoch phys

Buizza et al, 1999



No stochastic 
physics 

With stochastic
physics 

ENSO 
prediction: 
skill and 
spread

persistence

ECMWF 
coupled model



Stochastic physics has an impact on the mean 
state of the ECMWF model

Systematic 
error

Impact of 
stochastic 
PD scheme



Mean state without 
noise

Mean state with noise 

Could stochastically sampling the probability 
distribution of the sub-grid tendency, rather 

than always sampling the mode, make a 
difference? Yes if atmosphere is nonlinear!! 

••

Eg 1) Ball-bearing in a skewed potential well
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Eg 2) Lorenz(1963) in an EOF basis 

3rd EOF only explains 4% of variance 
(Selten, 1995) .

Parametrise it?



Lorenz(1963) in a truncated  EOF basis 
with parametrisation of a3

Good as a short-range forecast model (using 
L63 as truth), but exhibits major systematic 
errors compared with L63, as, by Poincaré-
Bendixon theorem, the system cannot exhibit 
chaotic variability – system collapses onto a 
point attractor. 
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Stochastic-Lorenz(1963) in a 
truncated  EOF basis

Stochastic noise
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Lorenz attractor

Truncated Stochastic-
Lorenz attractor –
weak noise

Error in mean 
and variance

Truncated Stochastic-
Lorenz attractor Palmer, 2001 

(acknowledgment to 
Frank Selten)



Stochastic-Dynamic Sub-Grid Models
1. Embed 2D Cloud Resolving Models in GCM 

(eg Grabowski, 2001; Randall, 2003). 
“superparametrisation”. Very expensive!!

2. Stochastic-dynamic cellular automata

EG Probability of an “on”cell proportional to CAPE and number of 
adjacent “on” cells – “on” cells feedback to the resolved flow

(Palmer; 1997)



Ising Model (for Ferromagnetism) – Stochastic Cellular 
Automaton Model- only nearest neighbour interaction

Above Curie Point

Below Curie Point

http://bartok/ucsc.ed
u/peter/java/ising/ke
ep/ising.html

http://bartok/ucsc.edu/peter/java/ising/keep/ising.html
http://bartok/ucsc.edu/peter/java/ising/keep/ising.html
http://bartok/ucsc.edu/peter/java/ising/keep/ising.html
http://bartok/ucsc.edu/peter/java/ising/keep/ising.html
http://bartok/ucsc.edu/peter/java/ising/keep/ising.html
http://bartok/ucsc.edu/peter/java/ising/keep/ising.html




It is envisaged that a 
stochastic-dynamic 
cellular-automaton-based 
sub-grid model will 
replace the current 
stochastic physics scheme 
in the EPS in 2004/2005. 
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Farrell and Ioannou, 1996

Quasi-constant forcing. 
Barkmeijer, Iversen and 
Palmer, 2003

SV representation of 
model uncertainty

+ parametric singular vectors (collaboration with MIT)



Conclusions

Based on seasonal prediction studies, forecast probability 
distributions from multi-model ensembles are intrinsically more 
reliable than those from single-model ensembles. Multi-model 
ensembles provide a useful pragmatic approach to the 
representation of model uncertainty. 

A more complete representation of unresolved and poorly-
resolved scales in specific weather/climate models may be 
achievable using (computationally cheap) stochastic-
dynamic sub-grid models.

Unlike the multi-model approach, stochastic-dynamic 
parametrisations can impact (and hence potentially reduce) 
model systematic error (eg in long-standing systematic errors 
such as MJO and blocking frequency).

SV techniques could be adapted to determine sensitive 
aspects of  model uncertainty
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