Probabilistic Early Warnings of Severe Weather based on the EPS

Ken Mylne and Tim Legg Met Office

EPS Background

Met Office Previn system provides forecasters with many ensemble products.

Probability density function for WIND SPEED

The Challenge of Predicting Hazardous Weather

Severe weather prediction difficult because:

- Model may not resolve severity of event
 - Limited model climatology
- Development often involves interaction of several elements
 - interactions are non-linear
 - elements are often small-scale (poorly resolved)
 - each element may be climatologically extreme difficult
- Need to get all these right in combination
 - all sensitive to small errors so chance of deterministic success is low

Predictability of Extreme Events

Hence "arbitrary changes to the trajectory of a system leading to an extreme event are likely to moderate (and not intensify) the extreme" Zhu and Toth (2001)

Ensembles for Severe Weather

Ensembles should be ideal for severe weather

- full account of non-linearity
- uncertainty in combination of small-scale processes

but

- model climatology may exclude extremes
- may require:
 - downscaling
 - calibration

What can we expect of an ensemble in predicting severe weather? - a thought experiment

What can we expect of an ensemble in predicting severe weather? - a thought experiment Ideally we would like high probabilities (e.g. >50%) - is this likely?

- When atmosphere is synoptically pre-disposed to severe weather (eg strong jet-stream or large CAPE) high probability is possible at short-range
 - possible to issue warnings of severe weather somewhere

But...

- How short is short-range?
 - Strong non-linearity in severe developments
- Most severe weather is relatively small-scale
 - local probabilities remain low

Site-specific probability forecasts

- The Met Office generates site-specific probability forecasts from the EPS (as described at 2001 Operations Workshop)
- How do these perform for severe weather events?

Calibrated probability distribution functions

- Ensemble members are reweighted based on rank histogram verification
- Tails are added to increase overall spread

Outliers – 95% confidence Temp.

Dark colours forecasters
Pale colours EPS

Only after full calibration can EPS compete with forecasters.

T&R Max v Ens: Max Temp. Bands 1-3

O.B

Verification -windspeeds at T+72

Reliabilty Diagrams for Calibrated windspeed forecasts

 Calibration of winds can improve forecasts at low thresholds but degrades at high thresholds

Brier Skill Scores for Calibrated windspeed forecasts

 Calibration of winds improves forecasts at low thresholds but degrades at high thresholds

First Guess Early Warnings Project

Met Office issues Early Warnings up to 5 days in advance - when probability ≥60% of, eg:

- Severe Gales
- Heavy rain
- Heavy Snow
- Developed a system to provide forecasters with alerts and guidance from the EPS
- Verified against short-period, high certainty warnings

Ken Mvlne

Calculation of Relevant Probs

Grid-point probabilities are usually low

RECOMMEND ISSUE OF A WARNING:

Relevant prob for warning is over all UK grid-points and longer period, so is much higher

ROC - Heavy Rain

- Verification is difficult due to small samples, but...
 - Warnings do have skill in discriminating severe events
 - Skill is best at 4 days
 - Severe gales results similar

Reliability 4-day forecasts Whole UK

Small samples make verification noisy, but

- There is clearly some probabilistic discrimination & skill
- Reliability is best at low probabilities high probs are rare

Reliability
2 and 4-day
heavy rain
Whole UK

2-day forecasts clearly have no significant discrimination

Reliability 4-day forecasts Heavy Rain

- Larger sample size for local regions reduces noise (but note sample is not independent)
- Otherwise performance is similar

Brier Skill Scores

Skill scores small but positive.

Left axis: skill relative to "null" forecasts

Right axis: skill relative to prior sample climatology (small sample)

Verification - Relative Economic Value

- Estimates value of forecasts to users making decisions with different costloss ratios C/L
- Relative to value of perfect forecast
- Much value for users with small C/L
 - low probabilities

New ideas for Calibration

- Calibration of warnings is difficult due to small samples of past cases for tuning
- Model climatology of extremes may be very different from real atmosphere
 - ECMWF uses EFI to relate forecasts to model climatology
- EFI is useful as an alerting system but does not provide probabilities of severe weather
- Can we use EFI climatology to calibrate warning thresholds?

Calibration of Warnings using the EFI Climatology

Calibration using site climatologies

- Alternative version of Early
 Warnings system calibrated by relating site climatologies to real site climatologies has been tested
- Results (pale blue on above verification results) are not quite as good as the fully tuned version, but provide a useful first estimate
- This will allow:
 - application to any site worldwide
 - application to any user's required warning thresholds

Met Office

Conclusions

- EPS-based warnings have some skill, but only around day 4
 - may be related to SV perturbation strategy at ECMWF
 - » lack of spread earlier in forecast?
 - » Requires non-linear evolution period?
- High probabilities are rare, as expected
- Forecasters now rely heavily on Ensemble forecasts

Questions?

