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Atmospheric waves

By Martin Miller

European Ceng for Medium-Rang Weather Brecasts

1. INTRODUCTION

In orderto understandhe mary andvariedapproximationsndassumptionsvhich aremadein designinga nu-
mericalmodelof the earthsatmospher¢whetherof small-scaldeaturessuchasindividual clouds,or mesoscale,
regional,globalweatheipredictionor climatemodels)it is necessaryo studythevariouswave motionswhich can
be present.Theidentificationandappreciatiorof the mechanismef thesewaveswill allow usto isolateor elim-
inatecertainwave typesandto betterunderstandheviability andeffectivenes®f commonlymadeapproximations
such as assumingtirostatic balance.

Herewewill attemptto identify thebasicatmospherievave motions,to emphasis¢heirmostimportantproperties
andtheir physical characteristics Basictextbookssuchas'An Introductionto DynamicMeteorologyby Holton
or 'NumericalPredictionand Dynamic Meteorology'by Haltiner and Williams provide a goodintroductionand
complementhis shortcoursewell. Whereaghesetextbookstreateachwave motionseparatelstartingfrom dif-
ferentsimplified equationsets we will separatevavesfrom a morecompleteequationsetby variousapproxima-
tionsmadeat later stageghusmakingit easierto relatetheimpactof a particularapproximatioron severalwave
types. Neverthelessto retainall wave typesin theinitial equationsetis unmanageablendwe will introducesub-
sets of equations later

We will restrictoursehesto neutral(non-amplifying,non-decayingyavesin which enegy exchangesreoscil-
latory.

While the exactequationhave beenconsiderablysimplifiedinto a usefulform for studiesof atmospheridynam-

ics,thesesimplifiedequationsannotesolvedanalyticallyexceptin certainspeciakcasesThemaindifficulty aris-

esthroughthenon-linearadwectiveterms(v [1J )v, v [IIT etc.Althoughthesegermscanconsiderablynodify the

linear solutionsandarealsophysically significantbecausehey representransferandfeedbackoetweerdifferent

scaleof motion,thelinearizedequationgobtainedy remaving second-ordeadvective terms)areusefulfor iden-

tifying theorigin of distincttypesof wave (acousticgravity andcyclone)in theequationslt shouldbeunderstood
that althoughnonlinearitywill modify the acoustic,gravity andlong wavesit will not introduceary additional

wave types.Sincetheorigin of wavescanbeidentifiedin thelinearizedequationsandthesecanbe solvedanalyt-

ically, useful methods for filtering indidual modes can be determined.

2. BASIC EQUATIONS

Thefollowing mathematicahnalysisrequiresa choiceof vertical coordinate While it is commonto usepressure
or apressure-base¢krtical coordinaten large-scalemodelling,this is not a necessaryheoreticakestrictionand
we can write the equations i (height),p (pressure) oo (= p/ p.), as follavs:

z -coordinates (x, y, 2, t)
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Du_. _ _1dp
Dt fo = pox
Du, o - 10p
Dt tfu = poy
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All source/sink terms are omitted.

]

p -coordinates (x, y, p, t)

An exact transformation ofL)~(5) to p -coordinates gies:

Du - 0P
m—fu = (1+s)ax
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o -coordinates (x, y, 0 = p/ p«, t)

Either by transformingl)(5) or (6)«11) we can obtain thexact o -coordinate set:

%_ﬁ; - —(1+s)%—(j;—RTa%(lnp*) (12)
%_';+fu - —(1+s)%—2})—RTa%(Inp*) (13)
BT - 14032 (14)

g_;ug_; 20 = Linp)+iin(a+e) (15)
%—f - KT%+%(|np*)§ (16)

5-D0 44D _ 0,9, 0 .0
whereo = Dt,anth = at+”ax+”ay+°ao'

All partial derivatives respect their coordinate system.

Notethatputting Dw /D¢ = 0 in (3),ande = 0 elsavheregivesthefamiliar large-scaleequationsets,but we
will not malke this approximatiorat presentln principlethefollowing linearizedanalysiscanbe donein ary co-
ordinate;we will useheightbut muchof this analysishasbeendonein pressureandsigmacoordinate®lsavhere
(e.g.Kasahara 1974;Miller, 1974;Miller and White 1984).

For simplicity we will supposéhatthemotionisindependentf y andneglectthevariationof the Coriolis param-
eterwith latitude( B = of /0y = 0). Alsowewill considesmalldisturbancesnaninitially motionlessatmos-
phere. A non-zero basic floand restoration o8 and non-zer@ /0y will be considered later

In orderto tracethe effect of individual termswe will use‘tracerparametersi,, n,, ng, n, Whichhave thevalue
1 hut can be set to zero to eliminate thevafd term.

K
We define® = In6 ,wheref = TB%E and p, is a reference pressure (e.g° Pa), and write

u = uytou =0d%u
v = vytdv=20dv
w=wyt+ow =dw
P = Po(z) +3p
P = po(z)+dp
© = 0Oy(z)+30

wheredu, dv, dw, op, Op, 0O denotesmagwerturbationsnnameanstateand Po(2), Po(2), Oy(2z) definethe
basichorizontallystratifiedatmospheravith =0 = —gp, - Sincewe considersmallperturbationsuchthatprod-
ucts of perturbations can begedcted and thaszpl/pO «1,18p|/py«1,[80|/0,«1 we can writg1)—5) as:
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%%—ﬁv+%%%%=0 (17)
%+ fou = 0 (18)
4%%@?ﬂ “
9 50 +5wB = 0 (21)

ot

_ 2 1._9
whereB = az(lneo) andHO = aZ(Inpo).

EXERCISE:
DeriveEg. (19)

Thecoeficientsf, B, g, 1/H, in (17)(21)areindependentf x and¢, sotheseequationsrelinearand,in an
unboundedegion, admitsolutionsof the separabléorm A(z)exp(i(kx + at)) whereA canbeacomple func-
tion,and% ando arethe x -wavenumbemandthefrequeng respectiely. Comple valuesof ¢ wouldimply am-
plifying/decaying vaves which are not considered here.

The full solutionis the appropriateFourier sumof termsof this form over all wavenumbers.Sincewe shall be
looking at indvidual waves we choose to discuss widual wave components rather than theuFier sum.

Insertingdu = @(z)exp(i(kx + ot)), dv = v(z)exp(i(kx + at)), andthecorrespondingxpressionsor ow ,
op, 0p, ando® into (17)-(21),andnotingthatthe operatorsd /dx, 0 /0t canbereplacedvy ik andio, re-
spectiely, yields the folleving set of ordinary diérential equations in the unkwos i, 0, w, p/ Py, P/ Pos 6

iou— fv+Lkp = (22)
Po
iocb+fi =0 (23)
o AP0 P_ .5 =
N Aow + —g—=—-n,B=~-g@ = 0 24
4 dzChed” 2" by g (24)
ﬁ + +i" _M =
nzlopo ikl & , 0 (25)
icO+WwB =0 (26)
Then(22) and(23) give:
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A ck P
i=-—-L (27)
o —f Po
L (28)
o —fPo
Eliminating &z between(25) and(27), and using (26) and the relation:
56 = 1P _P _ izﬁ_ﬁ
YPo Po ¢“Po Po
wherec = ,/yRT| is the Laplacian speed of sound;as:
d . p _
&w + %nz f Ep = 0 (29)
Using® = iwg (30)
to eliminate® from (24) yields:
. d D A
zo[g an]po+(gB 1,09 = 0 (31)

IngeneralB, 1/H, ¢ arefunctionsof z, sow and p/ p, areobtainedy simultaneousolutionof thetwo first
orderequationg29)and(31) andtheu , v, 0, p/ p, fieldsobtainedrom (27), (28), (30) and(25), respectiely.
However, for our presenpurposest is sufficientto considerconstan{mean)valuesof B, 1/ H, andc whichare
related byB + g/c2 = 1/H,. Then the dierential equation for the heigharation of i is:

02 n,0
n]d + (gB - n4c)%k—— -2q

g
og—t+ [B(nz ns) - >
d f c0d

¢ (32)

n,nu -
- Br&%n2 HOBD w =0

3. EXACT SOLUTIONS OF THE LINEARIZED EQUATIONS

The «act linearized equation fab , obtained by setting, = n, = ng = n, = 1in (32), is:

0 g2
00— —

1ld 10H,
2 Ho

33
H (33)

d k2 1D
L+ (gB- o)m— B%
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Onesolutionof (33)is ¢ = 0, andthecorrespondinglynamicalstructurecanbedeterminedy settingo = 0 in
(22)(26)togivens = w = 0 andd = (ik/f)(D/pPy) - Thisis geostrophienotionin the y -directionandis also
exactly hydrostatic. More detail of this solution will be considered later

If 00 in(33)then:

d°, 1d. k(gB-0%) 0’0
—W-—=———w+tF———+=mw =0 (34)
dz? Hdz a 02—f2 ¢’0
Settingiv = w.(z)exp(z /2H ) leads to the diérential equation:

2

dw. 2 2 2

S epgg), g L -0 (35)
dz O o-f ¢” 4H,O

In generaljf thewave motionis confinedbetweerphysical boundariesthen(35) mustbe solved with respecto
boundaryconditions—thais w. mustsatisfythe differentialequation(35) andthe prescribedvaluesof w. on
theseboundarieslt is reasonabléo supposédhatonly wavesof a certainfrequeny andwavenumbercansatisfy
all these constraintsoF such vaves the permissiblealues of the (characteristic) function

2 2 2
C(k,0,gB, f,c,Hy) = ’%m_z_%
o -f ¢® 4H,

are calleckigervaluesand the solutions corresponding to these e®@jers are calledigenfunctions.

For simplicity we shall supposethatthefluid is unboundedthe boundedoroblemwith w. = 0 atz = *H/2
(say)canbeattemptedsanexercise)andin thiscasat is readilyseerthatw. [ €™ isasolutionto (35)provided

that:

2 _kgB-0%, 0" 1

m (36)
o -f2 & aH:
This frequeng or 'dispersion' relationship is of fourth orderan
04—02[f2+02%e2+m2+—1—|]}+c [k gB+f2E(n2 ] =0 (37)
4H
and contains tev pairs of vaves mwing in the + x and —x directions, with:
- 4c2[k2g3 + 2%+ ng} %
O 4H, -0
GSZ%[f2+cz 2+m2+i2%} 1-- OZD (38)
4H0 0 f2+02%2+m2+_1-[| O
g 4H2D g
O U
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S PO W

2 _ 1,2, 22, 2, 10 0 4H§]D
oa:—[f +c8e +m +—5D} 1+l >0 (39)

2 4H, 0 [f2+02%2+m2+im} 0

- ag?t o

O 0 O

Thefirst pair of rootsrepreseninertial-graity wavesandthe secondpair representicousticwaves. Thisis not
obvious,especiallywith thedegreeof complicationrepresenteih thesetwo relationshipssoit is usefulto look at
extreme cases (i.e. short/longwes) to clarify the ab@ classification.

In suchdispersiorrelationsa basicunshearedonalflow ( z ) canbeincludedby replacingoc by ( o + k&), i.e.
Doppler shifted.

3.1 Gravity Waves

In thetropospheretheinertial frequeng f is smallcomparedwvith the Brunt—Vaisal&requeny ./gB (aglobal
averageof f / JgB mo‘z). Moreover their magnitudegogethemwith thoseof ¢ and H, satisfythefollowing
inequalities:

2 p2 2
HOf « f—z « gBHO

02 gB CZ

«1l (40)

Using relation(40) and consideringhort wavessuch that? » (gB/cz) , then(38) reduces to:

gBk2

2
o,
(k* +m?®+1/4H))

g

(41)

Thisis thedispersiorrelationfor shortinternalgravity waves(wavelength < 50 km say).Sincethewavesarerel-
atively short thg are not modified significantly by rotation (fim (41)).

(41) defines an upper limit to the frequgnice. 03 OgB for k*»m?, with a period of about 10 minutes.

Sincek? » m?, thepropag@tionis primarily in thevertical (oz/k2 « oz/mz) , With propagtionspeed®sf approx-
imately 10m/s.

We can substitute, = J&B back into(22)+26) and obtain the ‘geometry’.
EXERCISE:

Showthattheseoscillationsare transvese(particle pathsparallel to wavefronts).Derivefrom(41) a relationship
between grup velocity and phase velocity and consider ésrgetric interpetation.

Gravity wavesactasa signalto the surroundindluid of localisedchangesn potentialtemperatureShortgravity
waves are dispeng since their phaselocity /% is a function ofe and thg radiate enegyy.

Internalgravity wavesareexcited by local diabaticor mechanicaforcing. A particularlyinteresting,important,
andubiquitoustypeof gravity waveis generatedvhenthereis stablystratifiedflow overorograply. Theseareknowv
asleewaves astationarywave patternoveranddownstreanof theobstacleRelatve to themeanwind & thephase
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linesslopeupstreamgnegy mustbe propagtedupwardhencethe phasevelocity musthave a downward compo-
nent (this follevs from the preious ercise). Since theaves are stationary, = 0:

= V8B

(B* +m?®+1/4H))

1/2°

This can be solved for m (given &, &z, B) to give the phaseslopes. For vertical propagtion m®>0, ie.
u < JJgB/k , henceavourableleewave conditionsrequiresuitablelocal combinationsf mountain/hillgeometry
and lage-scale fla.

Theimportanceof vertically propagting gravity waves,especiallylee waves,in forecastandclimatemodelshas
attractedrecentattentionandtheir associatederticalmomentunfluxesappeato beasignificantfactorin the dy-
namics of the laye-scale circulation and of the stratosphere in particular

As we move towardsthelong wave limit of (38) theinfluenceof rotation(throughf) is increasinglyfelt andthese
long inertial gravity waveshave frequenciegendingtowardsf. Their horizontalphasespeedsecomelarge, of
relevancein the designof time-integration schemesandin the problemof initialisation. The limiting caseof
o0 = f represents a puigertial wave with neither boyang or pressure forces important.

EXERCISE:
Substitutes = f bad into (22)26).

3.2 Acoustic waves

In asimilar mannemwe canexamine(39). Theinequalitiedn (40) areindependendf thecharacteof theoscillation
and consideringhort wavessuch that? » gB/02 it follows that:

o2 0c’(k* +m® + 1/4H)) (42)

Also if &% » (m2 + 1/4HS) , then:

o2 0c’k? (43)

The structure of these shorawes may be found by substituting E43) back into(22)~(26).
EXERCISE:

Show that these wavesdongitudinal with ngligible tempeature dhanges.

Themotiontransmitspressurgerturbationsvith a speed, the speedf sound for all wavelengths—i.ethe mo-
tion is nondisperse.

For long acoustic aves i.e.0%» fz, o’» gB andk - 0 itis readily deduced that:
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o’ Oc’(m® + 1/4H)) (44)

Sincea/k, 6/m arehorizontalandvertical phasespeedstespectiely, we candeducehatshortacoustiovaves
propagte with vave fronts almostertical and vice-grsa for long \aves.

4. SIMPLIFIED SOLUTIONS TO THE LINEARIZED EQUATIONS—FILTERING APPROXIMA TIONS

It is usefulto simplify theexactlinearizedequationsincewe canthenextendthe physicalprinciplesbehindthese
approximations to simplify the much more complicated non-linear equations.

In particular in this sectionwe shallshav how soundwavesandgravity wavescanbefiltered,anddeterminecon-
ditions under which the static approximation to the pressure fietdids v

It is notohvious‘a priori* how anapproximatiormadein oneequatiorfeedsthroughto affecttermsin otherequa-
tionsandhencemodify the mathematicahndphysicalsolutions We thereforecarry outthe necessarglimination
rathercarefully andfor this purposewe retainthe parameters:,, n,, ns, n, to tracethe effectsof anapproxima-
tion. However, we seefrom (32) thatn, andny occurin thecombination(n, —n4) whichvanishesn the exact
equations(n, = n, = nz = n, = 1) . Consequentlya spurioustermwill ariseif we neglectn, butretainng, or

vice-versaWe thereforemusteitherretainboth n, andrn, or neglectboth. We thereforehaveto setny = n, in

(32).

For reasongalready discussed,the acoustic and inertial-gravity solutions to (32) are proportional to
exp%m + ﬁ , provided that the oscillations opé¢he followving frequeng equation:
0

2
n

B2 mle U Al
4H o —f

KU -gB+o'(na=D)] o (1-ny)
H

nons— +Bn2[ +B(n3—1)} =0 (45)
c

4.1 The elimination of acoustic waves

It is helpful to discussthe physical origin of acoustiovavesin orderto indicatethe mathematicahpproximations
necessaryor their elimination. Acousticwaveswill occurin ary elasticmedium,andthe elasticcompressibility
of afluid is representedby dp /0t in the continuity equationsoit is reasonabléo supposeahatthe removal of
thistermwill filter acousticwaves. Moreover, sincewe wantto usethesesimplified (anelasticequationsn, for
example alateranalysisof gravity waves,we hopethattheeffectof filtering soundwaveswill notdistortthegrav-
ity waves in the anelastic equations

So settingn; = n, = 0, n; = n, = 1 in the general frequep@quation45) gives:

2 2
k(ng—Zo) :mz+% (46)
o -f 4H,

(46) hasonly two rootsin o, contrastingwith the correspondingexact frequeny equation(36) which hasfour

roots, representingtwo inertial-gravity waves and two acoustic waves. Rearranging(46) and noting that
2

f/gB«1,
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2
o = f2 + gBEk - (47)
B2 +m’+ —
The short-vave approximationlé2 » (;fz/gB)(k2 + 1/4H§)) to(47)is:
2 BE?
o’ = g—l (48)
R2+m®+ —

which by comparisorwith the short-wave approximatiorto the exactequation(41) clearly representan (undis-
torted) graity-wave oscillation. Similarly the long inertialaves represented hyz sz are undistorted.

The basiccriterionfor neglectof d /0¢(dp /py) . viz n, = 0, is obtainedby comparing(46) and(36) andthis
criterion can be seen to be that:

2 2032 2 10
O-«C% +m + —
2]

Thatis, thatthefrequeng of inertial-gravity wavesmustbe muchsmallerthantheacoustidrequeng, a condition
always well satisfied.

Fromtheseconsiderationsve canusetheacousticallyfiltered equationsvith confidencen ary detailedexamina-
tion of gravity waves in the atmosphere.

Puttingn, = n; = 0 in thefully non-linearequationgefinesa setof equationsvhich do not supportacoustic
waves. Althoughlocal elasticdensitychangesareabsentyariationsin densityareincludedthroughthe vertical
density \ariation (H,) and where multiplied bg in the \ertical momentum equation.

4.2 The hydrostatic approximation

Thehydrostaticapproximatiorto thepressurdield (Dw /Dt = 0) canbemadef 0(dw) /0t « gd® inthever-
tical componenbf themomentumequation(19). However, neitherthe precisecircumstancesnderwhich this ap-
proximation is walid nor its dynamical feedback orawve structure is obous.

Referring to(45) it is clear that the criteria for theglect of the terms wolving n, are:

(a) o’ «cz(k2+m2+ 1/4H(2))

(b) o°«gB
Thefirst criterionis alwayswell satisfiedby inertial-gravity andgeostrophiavaves,sincetheseareof low frequen-
cy by comparisorwith theacousticoscillations. The seconctriterionis well satisfiedby inertial wavesbut not by
very shortgravity waves,sincefrom (41) we establishedhat ./gB is their approximatdrequeng. We therefore

examinethis seconccriterionalittle morecarefully From (41) we seethatthefrequeny of puregravity wavesis
given by:

2 gBk2

o
E*+m®+1/4H;

10 Meteorological Training CourseLecture Series
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in which caseo” « gB only if k2 «m?+ 1/4H§. We canthereforeonly setn, = 0 for systemswith flow
‘geometry' satisfying this criterion, i.e. the horizontal wavelength must be much greaterthan the vertical
wavelength.

To demonstrate this more clearly we sgt= 0, n, = n, = n; = 1 in(45), shaving that:

2 2 gBk2 (49)
m®+1/4H;

Comparingthis equationwith (41)it is obviousthatunlessk® « m® + 1/4H§ , thegravity wave will be consider-
ably distortedif the pressurdield is hydrostatic.Theinertial wave is, however, unafected.Soin particular if the
systembeinganalysechascomparableverticalandhorizontalwavelength the hydrostaticassumptiorshouldnot
be used- for examplein corvectve scalemodels.If however L, » L, , thatis L, = 100 km for disturbancesf
depth 010 km, the lydrostatic approximation will not appreciably distort thevgyawaves.

Acousticfrequencieslo notappeain (49) andatfirst sightit would appeathatall acousticoscillationshave been
filteredfrom theequation®f motionby makingthe pressurdieldshydrostatic.Thisis notthecasehowever, since
oscillationscharacteriselly w0 = 0 _everywherearenotrepresenteth (49); sincethisequationwvasobtainedrom

(32) by assuminghat v wasnotidenticallyzero.Vertically propagtingacoustiovaves(iw # 0 )are however, fil-

tered by demanding that the pressure field should/dsoktatic.

4.3 The Lamb wave

We now examinethecasewhereiv = 0 everywhereln thiscasg32)is clearlyredundantandwe mustreferback
to (29) and(31) to obtain the frequenaf possible oscillations. From these equations withs 0

Lh 2 O3

OD_22_ zk 2["1tl =0 (50)
&° o°—fTPo

o4 _p,. 0P _ (51)
;B

Now p/p, = O isatrivial solutionbecauseavith @ = 0, it follows thatthefluid mustbe motionlessandhydro-
static(du = dv = dw = &p = 8O = Jp = 0) i.e. the initial state.

The rooto = 0 is the geostrophic mode preusly examined.
The remaining oscillation is represented by:
k2

2

o' -f

S
N

(52)

ol

2

o

. d 0P _
h B =
wit Hs n3|:b0

Sincen,, n tracetheelasticcompressibilitythis type of motionis aform of acoustiavave, andcanbeeliminated
by settingddp/ 0t = 0 in the continuity equation anBdp/p = 0 in the \ertical momentum equation (19).

Note that, ifn, = 0 but ng = 1, a spurious pressure perturbatiprip O % will arise.
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To discuss the structure of the oscillation more carefullyeset n; = 1, in which case:
2 _ f2+k202 (53)

= ¥ cog(kx + ot)

S

Referring back to the equations of motion in the ussl we obtain for the rest of thanables

b=w =0

=0

PO O'DPD

u__
k2 o0

Theoscillationis thereforeapressureulsepropagtinghorizontallyatthe speedf sound.Thistypeof oscillation

is known asa Lambwave; it hasnggligible physical significanceandis removed by the anelasticapproximation.
The Lambwave canalsobe eliminatedby appropriateupper or lower-boundaryconditions.For large-scaldore-

castmodelsthesemethodsof eliminationare not usually appropriate However the longestgravity waves have

comparable phase speeds to the Larakevsee Section 7).

It is worth stressinghatthe presencef the elastictermin the continuity equationis ratherconcealedn the pres-
sure-andsigma-coordinatéorms of the continuity equation however both (9) and(15) areelastic(evenwith the
hydrostatic approximatiorg = 0).

Although the hydrostaticapproximatiorfilters vertically propa@ting soundwavesit is unnecessarilyestrictve
andit hasbeenshavn thata smallapproximatiorto the vertical acceleratiorcanachieve the sameeffect (Miller,
1974;Miller and White 1984).

4.4 Filtering of gravity waves

For thetheoreticaktudyof large-scalalynamicsandalsofor theearlierlarge-scalenumericaimodels thepresence
of gravity wavesis of little significancgandanuisance!).Thefollowing analysisdemonstratethatrequiringthe
local rate of change ofrgence to be zero is a fiafent filter.

Taking (17)+21), settingn, = n, = n3 = n, = 0 and eliminatingd® anddw leads to the equations:

0 @ou[] 660 9’ op0 — 0

"s3¢00x 0 1 ox ax2PoC
0 @dvQ f[@éug 0

9t0ox 0 '0ax 0~
900 P [95um
30 -8B 0
0t Tz 2DF’O 0 Hox
0 [ﬁéug .
where we hee introduced an additional tracer; , on — 3i00x . These equations & the
dispersion relation:
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0 ECMWEF, 2002



Atmospheric waves £
A~ 4

2
0[(1”2—71502) +gB %} =0 (54)
m

It canreadilybe seenthatsettingn; = 0 eliminatesthe inertial-graity wave solution. Useof therotationalor
geostrophic wind clearly achies this.

4.5 Filtered Rossby wave (previously the = 0 solution)

Using the previous filtering approximationsand now retainingthe variation of Coriolis parametemwith latitude
leads to the folleing equation for the pressure perturbatiodp( / p,) = p ):

2~ 2~ 2 2~
90°p,9p, fodpQ

op
a +p22 = 0 (55)
0f (92 ay” 8B a7

dy

Putting p proportional toexp[i(kx + ly + mz —at)] gives the dispersion relation:

Bk
2

2 2. 2foQ
b+ e mt g

o= -

and for a uniform basic zonal currelit (i.e. replacings by (o —kU)):

o= kU- Bk (56)

Thus these aves, knevn asRossby vaves must propagtewestward relative to the mean zonal flosince:

¢, =U- B
2,42 zfém
He +1°+m EED

Clearly Rossbywavesaredispersve andlong zonalandmeridionalwavelengthawill propagtefastestHowever
typical valuesshaw thatlarge-scaleRossbywavesmove quite slovly (10 m s'1). From (56) we candeducethat
short zonal \velengths hee a group &locity opposite in direction to their phasalocity.

Equation(55) is a form of the barotropicvorticity equationwhich stateshatthe vertical componenbf absolute
vorticity is conseredfollowing thehorizontalmotion.A usefulphysicalappreciatiorof thewestward propagtion
is shavn in Fig. 1 (from Holton).
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Figure 1. Perturbatiorovticity field and inducedelocity field (dashed arvgs) for a meridionally displaced
chain of fluid parcels. The heawavy line shavs the original perturbation position, and the light linenghthe
westward displacement of the pattern due toeadion by the inducedelocity field.

By consideringachainof fluid parcelsalongalatitudecircle andrequiringthat { + f is conseredthen,if { = 0
initially, a meridional displacemedy results in:

fo =1+, (conservation
but 1, = fo—f, = —Bdy (definition)

A sinusoidaldisplacementhereforegivespositive (cyclonic) vorticity for southvard displacementandnegative
(antigyclonic) vorticity for northward displacementsilt is thenclearfrom the diagramthatthis inducedflow field
adwects the chain of fluid parcels such that tleerpattern propages westards.

5. SURFACE GRAVITY WAVES

Sofarwe have consideregberiodicoscillationsin unboundedluids, andthequestiorof appropriatéooundarycon-
ditionshasnotarisen. We now examinewavesin aregion boundedelown by asmooth horizontal rigid boundary
andabove by a free surface. A “free” surfaceasthe nameimplies meanghatthe surfaceshaperespondsgo the
motionwithin thefluid andcannotbe determineda priori' i.e. the fluid motion andthe boundaryshapemustbe
determined simultaneously for a complete solution of a free-boundary problem.

Any smoothsurface eitherfreeor rigid, mustbeamaterialboundary Thatis, particlesadjoiningthesurfacefollow
thesurfacecontours.It followsthatD(z —h)/ Dt = 0 atz = h,whereh isthesurfaceprofile,defineghis (kin-
ematic)condition. Sow = Dh/Dt, aconditionwith reduceso w = 0 onahorizontal rigid boundary How-
ever, this kinematicconditionaloneis not sufficient to determinethe shapeof a free surface,and an additional
(dynamical)boundaryconditionmustbe specifiedto determinea solution. This extra boundaryconditionis con-
tinuity of pressureln practicethis conditionhasto bere-expressedn termsof kinematicquantitiesby usingeither
the momentum or Bernoulli equations.

We will considerthe simplestexampleof surfacegravity wavesandisolatetheir physicalorigin. For this purpose
we supposehefluid to be unstratified(B = 0) . Acousticwavescanbe eliminatedfor reasongiven earlier but
this has to be done rather carefully so we retgirat present.

With these assumptior82) reduces to:

14 Meteorological Training CourseLecture Series
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2 O p2 0
B L S AL R (57)
dz Hodz °—f> 0

For simplicity we will look at the behaiour of small amplitude waves in a fluid with a free surface
h(x,t) = Acos(kx +ct) above whichthe pressurés assumedonstanie.g.air—seanterface,modelof waves
on inversion). The lier boundary is assumed to be a rigid horizontabsaratz = 0.

With the ab@e comments in mind the (non linear) boundary conditions are:
M w
(i) w = Dh/Dt atz = h

Oatz =0

(i)  pressurecontinuousat the free surface,which in this exampleis equvalentto Dp/Dt = 0 at
z=h.

The linearized forms of these conditions are:

(i dw

Oatz =0
oh /0t atz = h

(i) ow
(i)  0(dp/py)/0t = gdw atz = h which,by using(29)andtheconditionthat B +g/c2 = 1/H,,
can be shon to be equialent to

d . [(n1—n,) ISP _
&w—{ , +g02_f2w—0 at z=h (58)

From (58) we seethatif we eliminateacousticwavesby settingn, = n; = 0, we mustalsosetn, = 0 in the
boundaryconditionotherwiseanoscillation,spuriousin the sensehatit cannotoccurin the exactequationswill
arise through an inconsistent approximation.

Equation(57), with the abore boundaryconditions,canreadily be solved for all wavelengthsbut it is
instructive to consider long and shorawes independently

5.1 Long waves

If wavesarelongto theextentthatkH, « 1 andkh « 1, thenthenon-tydrostatictermcontainingthetermrn,, in
(57) can be nglected by comparison witfll/ H ;)(di/dz) and the solution is seen to be:

4

anOD

0
-e 0O
O O .
ow = CA - sin(kx + at) (59)
O™y O
e °-10
0 a
[l eyl
whereo? = f2+gHokZEIL—e H‘E.
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If the height scale is g#igible by comparison with the density scale height I&ft( H ;)

& +gh[|+ OI:H 0

WICI

andis, therefore the propagtion speedof long surfacewavesin aliquid or anatmospheridayerwhich is much
shallaver than 7 km. 6 instance, long aves on the boundary-layenirsion,4 = 1 km and sa: = 100 m st.

- oo
g .
%2 0

It is easyto shav thatthe earthsrotationonly becomesmportantfor synopticscalesor longer For the earthsat-
mospherehesedeeplong wavespropagteat about270m st Thesdong wavesareoftenreferredto as“shallow
water” waves and the equationset resulting from (17)~(21) with the relevant approximationgnhormally with
0/0y # 0) form the “shallov waterequations”.Theseprovide a popularequationsetfor analytical/dynamical
studies and also for testing and designing numericaraien schemes.

If, on the other handh » H,, (for example in a deepas) the

w'_r’c.

5.2 Short waves

WhenkH,» 1 andkh » 1 theterminvolving n, cannotbeneglectedwhereasotationcanobviouslybeso. The
solution can be shn to be:

dw = —cA%exp[nl(zz;H}:)] sin(kx + ot) (60)

whereg® = gktanh(kh) . Hence forkh » 1, o/k = ./g/k , a much slwer phase speed than the lonayes.

If desired, free-sudtce vaves can be eliminated by imposing rigid upper ameetdooundary conditions.

6. EQUATORIAL WAVES

NeartheEquatoratmospherievavesacquirearatherdifferentcharacteandwhatwereclearlydistinctmechanisms
ceasdo beso. Following Matsuno(1966)we will studyequatorialwavesusingthe shallav waterequationsvith
f = By, known astheequatoriabeta-planeandincluding /dy # 0, andlinearizeagain abouta stateof nomo-
tion. Hence:

on'

_Byv‘ +g— =0
av oh'
= 61
+Byu' + g=— 3y 0 (61)
ah' Pu' , dv'g_
HDax oy~ 0
EXERCISE:
16 Meteorological Training CourseLecture Series
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Derive the abwge equations &m (1)—(5).

Assumingwavelikeformsfor (u',v', k') = (4, D, fz)exp[i(kx + ot)] intheeast—wedtlirection,butretainingthe
y -variation &plicitly leads to the dferential equation:

2|
do it = 62

It is corvenient to non-dimensionalize the equation using:

¥y’ = —“%HAZ; R = Py of = [gHp

JeH
(62) then becomes:
d% 2 2 U 2 _
R+B,o-p +6_)\E+3_o (63)

This equation is a form of Schrédinger equation with solutions, if
(oz—u2+(%=2n+1 (n=012..), (64)

of the formd = voexp(—)\z/Z)ﬂ{n()\) ,
where #{, is ann th order Hermite polynomial®{(, = 1, #, = 2\, #H, = 2(27\2—1)).
Clearly the solutions are 'trapped' near the Equator by the Gaussian funq](ehz/Z) .
The dispersion or frequepncelationship(64) is cubic inw:
W —(WP+2n+)w+p =0 (65)

Thethreedistinctrootsrepresené pair of inertial gravity wavesandoneRossbywave. Thesolutionscancorven-
iently be studied by considering the casesn(%lﬂ u2 and (b)|w «p (& large), hence:

W, = TP +2n+1 (66)

wsz_z_“__ (67)
M +2n+1

Returning to dimensionakbviables, we obtain for the phasaacities (defined by =—a/k%):

v = w/gH 1+ BELED
azm B
3 %2 L BCn+ 1)
JeH

Meteorological Training Course Lecture Series
0 ECMWEF, 2002 17



(20 Atmospheric waves
A\~ 4

Obviously ¢, , area pair of eastvard andwestward propagting inertial gravity waveswhile c; is a westward
propagting Rossby ave.

For n = 1 these three solutions are distinat for n = 0, (65) can be &ctorized:

(w-p)(*+wp-1) = 0

Theroot w = p is unacceptabléshav) but theroot w, = —u/2— A/(p/2)2 + 1 is aneastvard propagtingin-
ertial gravity wave andtherootomega w, = —p/2 + J(u/ 2)2 + 1 is calledamixedRossbygravity wave;thisis
becauseasp - 0, w, - 1 (thelimiting caseof gravity waves(see(66)), while,asp - «, w, - 0, thelimit-
ing case of Rossbyawves (se€67)).

Oneotherimportantspecialcaseis whenn = —1. This corresponds$o a wave with ¢ identicallyzero.This has
solutions(see(61)) ¢ = —a/k = +./gH , whereonly the positive root is acceptabléthe negative root violates
the equatoriabeta-planeassumptionSeealso(65) with n = —1). This fast-mwing eastvard propagtingwave

is the Kelvin wave (seeFig. 2 ). Thesewavesoccurcommonlyin the oceanaswavesalongcoastlinegdecaying
exponentially avay from the coast).
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Figure 2. Velocity andpressurealistributionsin thehorizontalplanefor (a) Kelvin waves,and(b) Rossby—graity
waves (from Matsuno “Quasi-geostrophic motions in the equatorial area”, J. Meteorol. Soc. Japan, 1966).

Datastudiesof the equatorialstratospher@éave identifiedboth very long wavelengthK elvin andmixed Rossby—
gravity waves.Considerableecentinteresthasbeenshavn in thesetropicalwavesin studiesof diabaticforcingin

thetropicsandits impacton higherlatitudes(Gill, 1980etc.).Fig. 3 summarisetheseequatorialvave character-
istics.
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Figure 3. Non-dimensionafrequenciegrom (65) asa functionof wavenumberThelinesindicatethefollowing
types of vaves: Eastard propagting inertial-graity wave (thin solid line); westard propagting inertial—
gravity wave (thin dashedine); Rossbywave (thick solid line); Kelvin wave (thick dashedine). (After Matsuno
1966)
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7. SUMMAR Y DIAGRAM AND MODELLING IMPLICA TIONS

T I T 10.000
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\: 2T|:/V Vertical Wavelength n
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Figure 4. Véves in a compressible atmosphere (from J. S. A. Green — Dynamics lecture notes)

Fig. 4 summariseghe basicwave types.lt is a dispersiordiagramof horizontalphasespeedlottedagainsthori-
zontalwavelength(bothlogarithmic scales}koisoplethsof wave periodarestraightlines of unit slopewith inter-
ceptlogo . Some points of interest are:

® The short vertical wavelengthacousticwaves which, while having phasespeedsormalto their
wave frontsequalto ¢ = /YRT , have very large horizontalphasespeedgwith wave frontsalmost
parallel to the ground).

(i)  Mesoscale graty waves are almost non-dispersi

(i)  Rossbywavesfor long wavelengthsvary like &2 while the shorterwavelengthsancludethe mixed
Rossby-graity mode.

In previous sectionswve have identifiedseveralwave typeswith a wide rangeof frequencies.The choiceof time
stepin anumericalmodelis dominatecdby the highestfrequeny waves(seelLectureNote 1.4). Thusfor example,
acoustiovaveshave afrequeny o = cnk*+m? andfor atypicallarge-scalemodelz /m = Az /Ax 01072,
Henceoy, »x is dominatedoy thevertically propagtingacoustiovavesandit is desirableo filter outtheseverti-
cally propagting waves by assumingyldrostatic balance.
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Horizontallypropagtingacoustiovaves(Lamb)posedessof aproblemsincetheirfrequenciesrenotmuchhigher
thanthelong gravity wavesdiscussecarlierleft ((o, )/ gy OJYRT/ gH = 1). Neverthelessrariousnumerical
technigues hae been désed to ease this restriction (see Lecture Note 1.4).

We couldmale theanelasti@approximatior(dp /0t = 0 in thecontinuityequation)ut retainthenon-tydrostat-
ic terms.An equationsetbasedn (17){(21) with n, = n5 = 0 thenallowsusto predictu , v andw ; however

thesecomponentsnustsatisfythe continuity equation Differentiating(20) with respecto time andsubstituting
from (17), (18) and (19) gives a diagnostic Poisson-type equation for the pressure of the form

Dz(ép /Po) = F(u,v,w, ...) whichmustbeinvertedeachtime step.This is a relatively expensve procedure
andnotjustifiablefor large-scalenodelsbecausé¢hehydrostaticapproximations well-satisfied For muchsmaller
scalemodelswhereAx = Az thedecisionis nolongerstraightforvardandgenerallyeitherthe anelastiapproxi-
mation is made or soundaves are retained and treated by some sophisticated numerical technique.
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