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1. Introduction

This paper discusses the interaction of the part of the ECMWF model which is ‘parametrised’ with the part that
consists of explicitly resolved solutions of the equations of motion. Though the parametrisations are often
collectively referred to as ‘physics’, they include a number of different elements, as listed below.

(i) The sub-grid model, which represents the effect of unresolved dynamics on resolved dynamics.

(i)  Additional source/sink terms in the equations for temperature and moisture, resulting from
radiation, cloud and precipitation physics in particular.

(iii) Boundary flux terms, which include terms that couple different sub-models, such as atmosphere
to soil or atmosphere to ocean.

Each of the main processes into which the parametrisations are divided contains elements of all the above. In
this paper we first discuss the sub-grid modelling problem, in particular for model resolutions similar to the
T511 spectral resolution of the ECMWEF model. We then discuss the interaction of parametrised processes with
large-scale dynamics by using ‘balanced’ models, which only describe large scales. This leads to a number of
useful principles which can be applied in primitive equation models. We then illustrate how integration
schemes can be designed which improve the coupling of different physical processes, and in particular allow
the treatment of a mixture of time-scales. We demonstrate this in the operational model. Finally we show how
the formulations of the sub-grid model and resolved dynamics can be combined to give a more numerically
accurate formulation.

2.  The sub-grid modelling problem

The ECMWF operational model has a resolution of about 40km in the horizontal, and a timestep of 15 minutes.
Figure 1 shows a plot due to Smagorinsky (1974) which shows the horizontal space and time-scales of typical
atmospheric motions. We can see that the operational resolution cuts across the internal gravity wave spectrum.
It allows fronts and cyclones to be well-resolved, but cuts across the scales of organised convection systems.
Sub-grid modelling can only be done accurately if there is a ‘spectral gap’ between resolved and unresolved
motions, in which case it can then be expected that a statistical treatment of unresolved motions will be
accurate,
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Figure 1 Characteristic scales of atmospheric motions.

However, Figure 2, from Gage and Nastrom (1985), shows that there is no spectral gap. This means that the
sub-grid modelling can only be carried out imperfectly, and unsatisfactory results are inevitable for motions
with scales close to the resolution of the model. Thus it is always desirable to try and increase the model
resolution as much as available computer power will permit.
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Figure 2 Graph of spectral densiry against wavenumber for various quantities derived from aircraft data
(after Gage and Nastrom (1986).
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3. Interaction of parametrised processes with large-scale dynamics

3.1 General principles

The basic principles of the interaction can be studied using the three-dimensional anelastic equations. These
exclude sound waves, but describe all motions of interest to meteorologists. They can be written as

D \
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The flow variables u, 8, p,I1 are assumed to represent space-time averages of the velocity, potential
temperature, pressure and Exner pressure. p,,. is a constant reference pressure. pg, 6, IT, represent the
density, potential temperature and Exner pressure of a horizontally uniform reference state in hydrostatic
balance and p', €', IT' deviations from this state. F and H represent the sub-grid model. These equations can
be used to derive a second-order gravity wave equation. If we take f as constant, this is:
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N represents a function of the nonlinear advection terms. We can write equation (2) symbolically in the form
52
t

L and M are linear operators. Equation (3) is the equation for forced inertio-gravity waves. The wave
frequency is determined by the eigenvalues of L and M. The eigenvalues of L are of order (H >+ L)/ 6,
where H and L are vertical and horizontal Sgales. The eigenvalues of M are of order (f2H 2+ N Ly 6,
where N is the Brunt-Vaisala frequency G%EO . The inertio-gravity wave frequency is thus of order

2 242
A/(fZH T @)

(H*+L7
Equation (3) shows what the nature of the response to a physical forcing P will be. If the forcing frequency is

comparable with the eigenvalues of L™'M, then the response will be inertio-gravity waves. If it is much lower,
then the response will be a ‘balanced’ vertical motion satisfying the equation
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Mw = N+P ©)

The dependence of the inertio-gravity wave frequency on horizontal and vertical length scale can be deduced
from (4) and is illustrated in Figure 3 If the Brunt-Vaisala frequency is greater than the inertial frequency f,
the normal case, the inertio-gravity wave frequency is very sensitive to the aspect ratio H/L if H/L<1.
Almost all resolved motions satisfy H/L <1 in the operational ECMWF model. Also, if the Brunt-Vaisala
frequency is greater than the inertial frequency f then (4) shows that the inertio-gravity wave frequency is also
greater than f, approaching f for large horizontal and small vertical scales. Examples of the former are tidal
motions and of the latter are quasi-inertia waves excited by the diurnal variation of the boundary layer top. In
the tropics, where f is small, almost any forcing on large horizontal or small vertical scales will excite inertio-
gravity waves. Only forcing acting directly on the time-mean state will elicit a balanced response. In a
numerical model, it is important that the scale on which parametrised forcing is applied to the model is realistic,
or the wrong type of response will result. It is easy to exaggerate the high frequency component if
parametrisations ‘switch’ modes in a discontinuous way between time steps. Similarly, small horizontal scales
may be exaggerated because parametrised increments are traditionally calculated in vertical columns, with an
independent calculation for each column.
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Figure 3 Logarithm of the ratio of the inertio-gravity wave frequency to the inertial frequency plotted
against the logarithm of aspect ratio.

3.2 Interaction with large-scale flow

The interaction of parametrised forcing with the balanced part of the flow is difficult to get right because it relies
on explicit geostrophic adjustment of increments added separately to temperature and wind fields. It is
therefore useful to study the interaction directly using a balanced model. This gives valuable information about
the desired solution, and also suggests ways of making this interaction more effective in operational models.
We study this with a semi-geostrophic approximation to the anelastic equations (1):
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The final equation of this set defines the geostrophic wind and imposes hydrostatic balance. The total (including
ageostrophic) wind is used in the D/Dt operator. These equations can always be solved, and require the
physical forcing to interact only with the geostrophic part of the flow. As shown by Shutts and Cullen (1987),
the solutions are always inertially and statically stable. This is needed for them to be a reasonable
approximation to large-scale solutions of the full equations (1). An unstable state would rapidly self-destruct
on small space scales under the full equations, so cannot represent a large-scale solution.

We illustrate this point in Figure 4, which is a very simple idealised model of a sea-breeze developing across a
straight coastline. We aim to show that a solution of (5) describes the large-scale part of the solution of (1). The
pictures show a (x, z) cross-section across the coast. The elements represent parcels of air. Those adjacent to
the land surface on the left are heated with a constant sensible heat flux. There is no heat flux through the sea
surface. The developing thermal contrast sets up a pressure gradient across the coast because of the hydrostatic
relation. This has to be balanced by a geostrophic wind parallel to the coast. Since there is no pressure gradient
in the y direction, the y component of the momentum equation in (6) becomes

l%’ +fu=F, (7)
This shows that the geostrophic wind parallel to the coast has to be set up by movement of air parcels across
the coastline. Figure 4shows a state generated this way, neglecting the effect of friction parallel to the coast. As
the amount of heating builds up, the wind parallel to the coast increases and the depth of the circulation
increases. This represents the balanced response to the thermal contrast as shown in the middle panels in Figure
4, which show the solution of (6) including friction. The actual gravity current dynamics by which the sea-
breeze propagates cannot be seen by a balanced model. The solution of (essentially) (1) with the same friction
is shown in the lower panels of Figure 4. We can now also see the gravity current, and inertio-gravity waves
propagating upwards. These solutions are discussed in more detail in Cullen (1989).
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Figure 4 Solutions of idealised sea-breeze problem. (a) to (c): solution of (6) without friction in the y
direction. (a) Initial data shown as fluid elements, (b) element positions after 6 hours, (c) potential
temperature contours after 6 hours. Panels (d) to (f): solutions of (6) using finite-difference method after 6
hours; (d) potential temperature, (e) wind parallel to coast, (f) wind across coast. Panels (g) to (i) as (d)
to () using hydrostatic version of equations (1).

We now study the balanced response to physical forcing in more detail by considering some key terms in F
and H. We assume a simple vertical diffusion scheme with mixing coefficient K, a mass-flux convection
scheme with convective mass transport M,, a diagnostic cloud and precipitation scheme where latent heat
release in saturated air results from the change of saturation vapour pressure with pressure, and a simple
radiative source term R . Write E for the entrainment/detrainment from the convective plumes. The potential
temperature equation can then be expanded as

2
06, 00 06 0K\00 | ,d9sa70p oK\ .06 3

Equations (6) can then be rewritten following Schubert (1985) as
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where 65 is the moist equivalent potential temperature and Qy represents a non-local matrix describing the
convective plumes.

Equation (9) has solutions which can be expressed as a time-dependent geostrophic pressure IT . The potential
vorticity (PV) matrices Q and Qp are calculated from it, together with the moisture distribution and boundary
layer mixing coefficients. The matrix Qp defines the convective ‘geometry’. The combined matrix Q and Qg
always has non-negative eigenvalues, Shutts and Cullen (1987). This reflects the fact that the solutions of (6)
must always be stable to inertial and convective instability. A ‘correct’ convective parametrisation for use in a
balanced model must ensure this property.

Equation (9) shows that the rate of change of the geostrophic flow is driven by the forcing term S which
includes both dynamical and physical forcing. The response to the forcing, expressed as the total wind
(u,v,w), is determined by the PV matrix Q. S contains geostrophic advection, radiation, which have slow
time-scales, and a slowly varying part of the vertical diffusion. If S contains fast time scales (compared to f-1),
this decomposition is inappropriate, as discussed in 3.1.

We illustrate how this works in the case of convection by an example drawn from Shutts et al. (1988). The
illustration, Figure 5, shows a cross-section of a frontal zone. Large-scale convergence intensifies the front,
leading to local ascent. This results in saturation of the boundary layer air parcels ahead of the front. The data
is chosen to be conditionally convectively unstable, so that once the air saturates it ‘jumps’ to a new equilibrium
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position in mid-levels. The right-hand panel shows the additional effect if precipitation is taken into account.
Precipitation cools the air through which it falls. The air parcels below the cloud then sink to a new equilibrium

position, increasing the convergence at the front and triggering more convection. Thus in the right-hand panel,
twice as much air has convected as in the left-hand panel.
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Figure 5 Fluid element pictures showing balanced cross-section of a frontal zone with moisture. Left: the

hatched elements are moist. Right: the striped elements have been cooled by precipitation falling from the
convecting hatched elements.

In this description, we can see that the convective mass transport is essentially determined by the large-scale
forcing. Thus the convective closure should take account of the forcing terms on the right hand side of (9) as
well as the convective geometry which is determined by the temperature, moisture and wind profile and
expressed in the matrix Q. This is not the same as the closure used in Kuo-type schemes where the closure
depends on the resolved divergence. In fact, the idea is to replace, rather than supplement, the large-scale

transport associated with the vertical motion w . In section 6.we will show how this can be achieved in an
operational model.

Other lessons which can be learned from (9) are the need to treat terms which play a similar role in the same

way numerically. In equation (8), the main effect of moisture in non-convecting cases is to reduce the static
stability from 00/dz to

99 . . ddsaTop
6_z+ rrlrh (12)

In a semi-Lagrangian model, the static stability is averaged along the trajectory in the dynamics, and effectively

becomes 6, -6, , so that the second term in (12) should be represented as L(ggsarg—Jsare) - The vertical
motion w is replaced by the total vertical transport
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d
(w - (13)
In the dynamics, w is averaged along the trajectory, and treated implicitly in time as far as possible. Thus the
convective mass transport and boundary layer mixing coefficients should also be averaged in time along the

trajectory and treated implicitly.

The final example in this section shows that equation (9) can be used to predict large scale quasi-steady
circulations driven by physical forcing. Figure 6is from an idealised monsoon simulation of Mawson and
Cullen (1992). The circulation is forced by an upper-level heat source over Tibet. The response is constrained
by the east African mountain barrier. This leads to a strong cross-equatorial jet which forms part of the
circulation maintaining geostrophic balance in response to the heat source. The solution of equation (9) is
illustrated, together with a simulation by a full climate model. The latter also has a mountain wave response,
which is excluded by the balance approximation, but the large-scale circulation is the same.
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Figure 6 Surface winds after 5 days of forecast driven by idealised heat source. Left: semi-geostrophic
model with physics. Right: full climate model.

4.  Coupling of the physics in an operational model

We now illustrate how the coupling of the existing operational ECMWF parametrisations and the explicit
dynamics already uses the ideas developed in section 3. Two key principles suggested there are:

()  Allterms in the vertical transport (13) should be calculated implicitly, using consistent space and
time-averaging.

(i)  All terms in the potential vorticity matrix (10), which includes the effective static stability (12),
should be calculated consistently using real atmospheric states, not partly updated ones.
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The following are examples of use in the current operational ECMWF parametrisations:

(i)  The vertical diffusion and gravity wave drag schemes are implicit. They take as input an estimate
of the actual atmospheric profile, and also the rates of change of winds, temperatures and
moisture. The output is an updated rate of change, thus ensuring consistency between the
boundary layer ‘transport’ term 0K /9z and the explicit vertical motion.

(i)  The cloud and precipitation scheme also takes in an estimate of the actual atmospheric profile,
together with the cloud source terms. The most important of these is the large-scale vertical
motion. The temperature increments from the cloud scheme include the large term wL—— 54 Tgp
The increments are averaged in space and time along the trajectory as described in Wedi (1999),
which is consistent with the way the resolved term w== is calculated.

(i) The increments from the convection scheme are also averaged in space and time along the
trajectory. Thus there is consistency in the treatment of w and M, in (13). However, there is an
inconsistency in the spatial differencing used. The resolved term is treated by semi-Lagrangian
methods and the convective term by Eulerian flux differencing.

Creating a fully implicit version of the model would be a major undertaking. We therefore demonstrate the
impact obtainable by using a predictor-corrector version of the model, which can be viewed as a first iteration
of a fully implicit scheme. This method is described by Cullen (2000). For a simple equation

w_F (14)
the operational integration scheme can be represented as
t t—d¢
ut+dt = ut+5t(§F _lp ) (15)
2 2
The predictor-corrector scheme can be represented as
w® = ut+ otk (16)
ut*8 = yt+ %St(Ff +F")

This scheme assumes that the time-scale of F is comparable to or greater than the timestep. However, the
physics includes some very fast processes which are calculated implicitly within the current algorithms. We
illustrate how to deal with this by considering the generic equation for a single physical process:

0

aS+D+F+S 17

Here s is a prognostic variable, D represents all other processes, F' represents the fast part of a process and S
the slow part. A time-discretisation of this consistent with (16) is:
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s —s+D'+F +8 =0 (18)
s*—st+%(Df}+DZ+F}+FZ+S§+SZ) =0

s —s+D"+F"+8 =0
st+5t—st+%(D;+D:+F;+FZ++S;+S:) =0

The first and third equations of (18) are solved at individual grid points, using implicit time integration. The
latest available estimate of the slow increments D and S is used. Increments F calculated this way then
become ‘slow’, because the fast time-scales have been accounted for. The result is then averaged in a second-
order way in space and time according to the last equation in (18), which has the same form as the second
equation of (16). Note that the first and third equations are like conventional local grid-point calculations of
physical effects. All the internal consistency built into modern parametrisation systems is thus preserved. Only
the final totals are averaged in a way that is consistent with the dynamics, thus obtaining overall second-order
accuracy.

We now demonstrate the effect of this using a simple analytic example. Consider an equation for a single
variable s as follows:

os
—+ A+ =
3% A+ Bs 0 (19)

A

I

cos(t +4s)

B

10 + 5cos(3s)
s(0) = 0.1

B is chosen so that it always implies a fast time scale compared with A . We illustrate integrating (19) with the following

schemes:

(i)  Centred implicit

St+5t - St—ﬁt(At+BtSt+5t) (20)

(ii)  Predictor-corrector
* ¢ i ¢ *
s =s —-0t(A"+B's) (1)

s =s'- 8t(A* + B*s+)

(iii)  Analytic predictor-corrector
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t
s = s'exp(-B'8t) ~%(1—exp(—Bt5t)) (22)

*

s = stexp(——B*St) - %(l—exp(—B*St))

8t _ %(S*+S+)

(iv)  Extrapolated

s =% _5t(ATY + B 23)

s = st—St(AtJrBts*)

t+ 6t £-0t
)

)

t 3, + & 1 .
= + = — (g —
s (s —s8) 2(8 s

Scheme (ii) is essentially that used in the vertical diffusion scheme and scheme (iii) is that used in the cloud
scheme. Figure 7shows the results with a timestep of 1.0. The reference solution uses scheme (i) with a timestep

of 0.1.

0-15 T T N T T T
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-~-- Predictor-corrector (vdif)
0.10 f  —-—- Predictor—corrector (cloud) .
-~ Extrapolated
0.05
/]
B
o
=
@
>
0.00
-0.05
-0.10 : ' : ' : ' :
0.0 10.0 20.0 30.0 40.0

Figure 7 Solutions of (19) with different algorithms.
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These results show that there is little to choose between schemes (i), (ii) and (iii). The error is dominated by
the choice of timestep. Scheme (i) is difficult to use in an operational model because it leads to coupling
between all variables at all levels and requires all processes to be computed simultaneously. However, the
inability to use new time-level values of the nonlinear coefficients A and B in this scheme does not appear to
introduce much error. Scheme (iv) achieves second-order accuracy in time without iteration by extrapolating
the tendencies of s . However, it is clearly less accurate.

Some implementations of parametrisations work on the basis that the increments are not closely tied to the
starting values and can be interpolated or extrapolated between time steps. We show that this is not the case for
equation (19) by solving with scheme (iii) with the last two equations of (22) replaced by

*

s = s*exp(—B*St)—%(l—exp(—B*St)) 4)
g8 St+%(s*—st+s+—s*)
0.15 - . ‘ . . :
~——— reference
——— Centred implicit
---- Predictor-corrector (vdif)
0.10 f  ——~- Predictor-corrector (old cloud) 1

—— extrapolated

0.05

Value of s

0.00

-0.05

-0.10 : ' : ' : ' :
0.0 10.0 20.0 30.0 40.0
Time

Figure 8 As Figure 7 with equation (24) replacing equation (22).

The result is illustrated in Figure 8, in which scheme (iii) is modified while the remainder of the schemes are
as in Figure 7 The results are clearly inferior to those when (22) is used, showing that, in this case, increments
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cannot be detached from their starting values. This may also explain the inferior performance of scheme (iv),
and is because equation (19) is diffusive with a fast time scale. Scheme (24) is the same as (22) for an equation
that can be solved explicitly rather than implicitly.

We now illustrate how to implement (18) within the context of the ECMWF physics, taking account of the
results shown in Figure 7 and Figure 8. Only a few of the main equations can be illustrated here. A typical
equation to be solved in the vertical diffusion scheme is

t+8t t 0 ou' o _
u o -u _at(U+§EK(Z)a_z' =0 (25)

This equation has to be solved implicitly because K is large relative to the vertical grid length. The vertical
diffusion is called after the radiation but before the rest of the physics. This is to ensure that the correct inputs
and outputs are available. Scheme (ii) can then be implemented as follows: in the predictor step set

+ ot ¢ 0 gt 0w
u -u —St(U +$K (z)a—z ) =0 (26)
Vi =u —u -l

U* should be the tendency from all other processes calculated at time ¢ evaluated at the grid point. Since this
are not all available when the scheme is called, only the pressure gradient, Coriolis term, and radiation
increment are used. These are much the largest contributions. V' is the vertical diffusion increment. In the
corrector step set

*+ ¢ R R _
u —u —St(U +§£K (z)—a—z ) =0 @n
V= utod - stU”
u”“—ut-%at(wg+W;+V;+V:“) ~0

where U is the sum of the pressure gradient, Coriolis term, and radiation increment calculated at the grid point
at time *, V™ is the vertical diffusion increment estimated at time ¢ + 8¢, and W represents increments from
all processes other than vertical diffusion.

The implementation of the gravity wave drag scheme is similar. The first equations of (26) and (27) are replaced
by
u'—u'-8t(U + A'lul'u™) = 0 (28)
* * * * *
u S U +A'lufw ) =0
and the remaining equations are similar. A is the drag coefficient.
A typical equation from the convection scheme can be written

du
ot

1 —
Eg_z[M”Pu"P + M gowntdown ~ (Mup + Maown) 4] 9)
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M, p, M g,,,, represent updraught and down draught mass fluxes. u,,,, 14, are updraught and down draught
horizontal velocities, and Z is the environmental horizontal velocity. If M, , and M,,,, are regarded as
velocities, the tendencies in (29) can be evaluated explicitly. Since they are advective, rather than diffusive, they
can be safely averaged in time as in equation (24), experiments show that this gives the best results. An
equivalent term from the explicit vertical momentum equation in flux form would be -;(w u) . This is averaged
in space and time along the trajectory using the semi-Lagrangian dynamics. A consistent method for (29) would
therefore be to define convection increments
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C+ = p—tg[Mtuputup + Mtdownutdown, - (Mtup + Mtdown)ut] (30)
C*+ = lia—[]‘l*uplt:‘:up + M*downu*down - (M*up + M*d"w”)u*]

ptaz

These are then applied averaged in space and time as in (27). The convective calculation determines
M, M 45, from the CAPE in the profiles at time ¢ and time * respectively. In order to maintain a steady
state, the amount of CAPE present in the profiles must be related to the amount generated in a timestep. Thus
if the scheme is designed to remove all the CAPE in a time interval 7', and an amount C is generated during
a timestep, the profiles must contain an amount of CAPE equal to CT'/8¢ . There is a danger that this could
allow explicit convection to take over. A remedy is to allow the closure to use also the amount of CAPE
generated during the timestep. In the current operational scheme this is included, but at the expense of using
partly updated profiles to calculate the cloud geometry.

A typical equation in the cloud scheme is the evolution equation for cloud liquid water

ol

= = C-DI 31
37 (31
where C, D are respectively the rate of generation of cloud water and the rate of destruction by precipitation.
The time scale associated with D is very short and the equations are therefore integrated analytically in time

as illustrated in equation (22), giving

t

" = ltexp (=D'8t) + %(1 — exp(=D'8t)) (32)

¢

*

I" = ltexp(—D*St) + %(1 - exp(—D*St))

The increments I -, 1"~ ' are then averaged in space and time as for the convection increments. The source
term C is dominated by the term wL—%SATa—g which combines with wg9 to represent the reduced static
stability in the presence of cloud. The space-time averaging of (32) is consistent with the space time averaging

of w== in the dynamics.

We illustrate the performance of this type of interfacing by showing the effect on various diagnostics from the
model. 14 forecasts at T511L60 resolution were run from T511 analyses for various dates between August
1998 and December 1999. The diagnostics shown in Table 5 . were computed from day 10 forecasts and
averaged over all the cases. The ‘balance’ diagnostic is the ratio expressed as a percentage of
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D% _2Dp'+ Dt-5 where D is the horizontal divergence, to D! itself. The control and predictor-corrector
schemes were tested with 15 and 20 minute time-steps in order to see if the time-step sensitivity is reduced by
the predictor-corrector scheme. The balance diagnostic is rescaled by the square of the time step to make the
15 and 20 minute results comparable.

TABLE 5. DIAGNOSTICS FROM 14 CONTROL AND PREDICTOR-CORRECTOR 10-DAY FORECASTS
Control 15m Control 20m Predictor- Predictor- ?.nd c'orrector
time st time st corrector 15m corrector 20m iteration 15m
P P time step time step time step
NORTHERN HEMISPHERE
Balance (%) 18 16 16 13 18
r.n.s. vertical 14 .14 15 15 .15
motion (pa s'l)
SD of PMSL 8.9 9.0 9.1 9.2 9.0
(hpa)
Large-scale .83 .83 .86 .88 .83
precip (12hr
accum)
Convective 30 .30 29 28 .25
precip (12 hr
accum)
TROPICS
Balance (%) 18 14 18 12 22
r.m.s. vertical 12 1 13 12 .14
motion (pa s’)
Large-scale .82 .84 .95 99 91
precip
Convective 1.40 1.34 1.24 1.20 1.15
precip
SOUTHERN HEMISPHERE
Balance (%) 21 19 18 15 19
r.m.s. vertical .16 15 .16 .16 .16
motion (pa s'l)
SD of PMSL 16.5 16.7 17.2 17.6 17.3
(hpa)
Large-scale 1.08 1.08 1.08 1.10 1.10
precip
Convective 23 .23 22 21 .20
precip

Table 5 . shows that the predictor-corrector scheme does reduce the small time-scale variability, as measured
by the balance diagnostic. Balance is also improved with a longer time-step as not as many small time-scales
are resolved. The change in the results between 15 and 20 minute time-steps is small for both schemes.

142



CULLEN, M. ET AL: INTERACTION OF PARAMETRISED PROCESSES WITH RESOLVED DYNAMICS

Considering all the diagnostics together, neither scheme is more sensitive. There is a transfer of about 10% of
the tropical convective precipitation to large-scale precipitation when the predictor-corrector scheme is used.
This is probably because of the difference in the convective closure discussed above. This change is within
acceptable bounds. There is greater synoptic activity in the extra-tropics, as measured by the standard deviation
of PMSL. This is particularly true in the southern hemisphere winter, and suggests that some damping present
in the operational scheme has been removed. The effect of a second corrector iteration is mostly seen in the
precipitation and tropical dynamics. This is most likely to be caused by switching in the precipitation
parametrisations, and suggests that a smoother formulation is needed for good performance of a fully implicit
scheme. Similar conclusions apply in data assimilation, where physics increments have to be perturbed. The
overall performance is illustrated in Figure 9 and Figure 10 There is a positive impact in the Northern
hemisphere at 500hpa, except at the very end of the forecasts where skill has been lost. This also occurs at other
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Figure 9 Anomaly correlation and rm.s error comparing 14 control forecasts with forecasts using a
longer timestep and a predictor-corrector scheme for integrating the dynamics and physics.
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levels (not shown). The effect is larger than that obtained by simply using the predictor-corrector scheme for
the dynamics, and the impact on individual cases is also much larger. This suggests that it is very important to
establish the optimum method of integrating the combined dynamics and physics in time.The effect of the
second iteration on the scores is very small, much less than the effect of using the predictor-corrector scheme
itself. This suggests that most of the benefit of a fully implicit scheme could be obtained by the predictor-
corrector scheme.
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Figure 10 Verification figures for the predictor-corrector scheme with a second iteration compared with a
single iteration.

We also illustrate the effect of the predictor-corrector scheme on a particular forecast of an extreme synoptic
case, the French storms of December 1999. Forecasts of this case were very sensitive to analysis and forecast
technique, and so the case indicates the maximum likely sensitivity of an individual forecast to this type of
change. In practice, increased sensitivity would also come from using the changed formulation in the
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assimilation cycle as well. Figure 11shows that the depth of the depression is significantly increased, and the
position improved.

S0°N

] SO°N =

40°N el

BO'N

]
= 4N

Figure 11 PMSL forecasts from 12 UTC 24 December 1999 verifying ar 00UTC 28 December 1999. Top
left: control forecast; bottom lefi: forecast using predictor-corrector scheme; top right: verifying analysis.

6. Blending of the sub-grid model into the resolved dynamics

The preceding section has demonstrated how the integration of the dynamics and physics in time can be made
more consistent, and how benefit results both in reduced short-time variability and better overall performance.
However. it is clear that the differing formulations used for different physical processes makes this consistency
quite difficult to achieve. In this section, we illustrate how a closer coupling of the dynamics and physics can
be achieved in the case of deep convection. This is motivated by observations in the tropics which show a close
balance between the temperature and moisture changes due to convection and those due to large-scale vertical
motion. Figure 12, after Yano (2001). shows the balance between the terms wg%R (called large scale forcing)

and Mea—g + E (called convective forcing) from (8).
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Figure 12 Scatter plot of forcing of temperéture by vertical motion and radiation (horizontal axis) against
convective forcing at the 500hpa level from the TOGA-COARE IFA analysis. The dashed line is the best
least-square linear fit. From Yano (2001)

This evidence suggests that the vertical motion required to balance the large-scale convergence by continuity
is almost cancelled by the subsidence which compensates the convective mass transport. Thus the total large-
scale motion is small, and most of the transport happens in the convective plumes. This is consistent with (9),
where the response to a forcing on the right-hand side will be in terms of convective rather than large-scale
transport.

We can reflect this situation in the model by .combining the convective transport equations with those for the

large-scale dynamics. Thus equation (29) for the convective transport of horizontal momentum together with
the equation for the vertical transport of horizontal momentum by the resolved dynamics becomes

ou 19 _ 0 _

% = ng[Mupuup +Mdownudown_ (Mup +Mdown)u]"w$u 33
We can rewrite this as

ou 19 1_9

'a‘Z = Eg[Mupuup + Mdownudown] - BUE(Mup + Mdown) . (34)

_ (w + é(Mup + Mdown))aa—zl_t

The final term in equation (34) is then solved using semi-Lagrangian methods, with w + l(M up + Maowy) used
instead of w in the departure point calculation. This has a stability advantage in the operational ECMWEF
scheme, because the advective part of the convection terms in (33) would be unstable if integrated with a
forward timestep and centred spatial differencing, and so upwind spatial differencing has to be used. This is
very diffusive. If a semi-Lagrangian method is used to solve (34), there will be no stability restriction from the
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advective term and the results will be more accurate. However, there may still be a stability issue arising from
the convective flux divergence.

Results are shown in Figure 13 and Figure 14. Figure 13 shows the balance between the convective mass flux
and large scale vertical motion for the operational ECMWF model at T319 resolution averaged over the first
12 hours of a simulation calculated at tropical (20°N to 20°S) points where deep convection occurred. The
results are shown for a level near 500hpa, but lower levels exhibit a similar effect. The results of a second
experiment where equation (34) was used for all variables is also shown. The balance is closer. as the slope of
the linear regression line is about -0.9 as against -0.7.The spread is similar.
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Figure 13 Balance between net convective mass flux and large scale vertical motion as computed by the
ECMWF model using the operational method with convection treated separately and the ‘omega coupling’
method using equation (34) with semi-Lagrangian advection.

Figure 14 shows the combined results of two 3 month simulations at T63 resolution using initial data from the
ECMWEF reanalysis project (ERA). The periods are June to August and December to February. The integrations
using (34) have rather less large scale vertical motion near the equator and a rather deeper extent of large
convective mass fluxes, as in Figure 13. The balance between the two terms is not very different in the zonal
means of the two experiments. This can be partly explained by the increased number of convective events found
using (34).
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Zonal Mean Omega - Exp: e5wg Zonal Mean Omega - Exp: e5vx

Balance - Exp: ebvx

Balance - Exp: efwg

Figure 14 Comparison of zonal means for net convective mass fluxes (top), vertical motion (middle), and
the balance between them (bottom). Left: ‘omega coupling’ using (34), right: operational scheme.

Other results (not shown) show that the large-scale forecast performance is similar to the control. Stability
issues at high vertical resolution possibly caused by the loss of internal consistency within the physics are still
under investigation. However, this loss of consistency does not degrade the overall conservation properties. In
fact. these are improved, presumably because of the greater numerical consistency between the convection and

dynamics.

7. Recommendations

We have reviewed theoretical work on the interaction of parametrised processes with large-scale atmospheric
flow, and illustrated how some of the understanding thus gained can be exploited in the design of operational
models. Some specific recommendations are listed below:

(i)

(ii)

The parametrisations should be written as far as possible as equations. so that the best way of
integrating them as part of the overall model can be determined.

The integration schemes need to allow for the presence of different time-scales within each
parametrised process.
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(iii)  There should be consistency between the way each process and the explicit dynamics is treated
numerically, as many important balances involve several parametrised processes and explicit
dynamics.

(iv)  Implicit treatment of the physics (e.g. convective mass fluxes and vertical mixing coefficients) is
desirable to allow proper treatment of those balances which involve physical processes. However,
smoother formulations are needed to get the best out of an implicit scheme.

vy The ECMWF convection scheme should be formulated in a way which is more consistent with
the rest of the model.

REFERENCES

Cullen,M.J.P., 1989: On the incorporation of boundary-layer effects into a balanced model. Quart. J. Roy. Meteor:
Soc., Quart. J. Roy. Meteor. Soc., 115, pp 1109-1131.

Cullen,M.J.P., 2000: Alternative implementations of the semi-Lagrangian semi-implicit schemes in the
ECMWF model. ECMWF Tech. Memo. no. 319.

Gage,K.S. and Nastrom,G.D., 1986: Theoretical interpretation of atmospheric wavenumber spectra of wind
and temperature observed by commercial aircraft during GASP. J. Atmos. Sci., 43, pp 729-740.

Schubert,W.H., 1985: Semi-geostrophic theory. J. Atmos. Sci., 42, pp 1770-1772.

Shutts,G.J. and Cullen,M.J.P.,1987: Parcel stability and its relation to semi-geostrophic theory. J. Atmos. Sci.,
46, pp 2684-2697.

Shutts,G.J., Cullen, M.J.P. and Chynoweth,S., 1988: Geometric models of balanced semi-geostrophic flow.
Ann. Geophysicae, 6 (5), pp 493-500.

Smagorinsky,J., 1974: Global atmospheric modelling and the numerical simulation of climate. In ‘Weather and
Climate Modification’, John Wiley and Sons, New York, 842pp, pp 633-686.

Wedi,N.P., 1999: The numerical coupling of the physical parametrisations to the "dynamical" equations in a
forecast model. ECMWF Tech. Memo. no. 274.

Wedi,N.P. and Cullen,M.J.P., 2001: On a stable and consistent numerical incorporation of parametrised
processes into a global forecast model. Proc. ICFD Conference on Numerical Methods in Fluid Mechanics,
Oxford.

Yano,J.-1., 2001: Residual cumulus parametrisation. Quart. J. Roy. Meteor. Soc., 127, pp. 1261-1276.

149



