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Evaluation of Jacobians for variational data assimilation

Abstract

In this paper, linearised versions of fast infrared radiative transfer schemes for varia-
tional data assimilation are studied. A neural network-based infrared broad-band radia-
tion model (NeuroFlux) is compared to the European Centre for Medium-Range Weather
Forecasts (ECMWF) operational radiation model. Also, a scheme for satellite brightness
temperature computation (RTTOV) is compared to a more physically-based scheme: the
narrow-band model Synsatrad developed at European Organization for the Exploitation of
Meteorological satellites (EUMETSAT). The Jacobians are examined. They are converted
into flux perturbations with the tangent-linear approximation, and into atmospheric vari-
able increments with a one-dimensional variational assimilation system (1D-Var). For
NeuroFlux as well as for RT'TOV, despite accurate flux and radiance computation, the
sensitivity with respect to water vapour needs to be improved.

1 Introduction

A variational algorithm adjusts a set of control variables in order to minimise a function
of these variables. Variational algorithms have been increasingly used in data assimilation for
numerical weather prediction. They are particularly suitable to derive statistically optimal de-
scriptions of the atmospheric state (the so-called analyses of the operational weather centres)
used to provide initial conditions for forecast models. In this case the function, called cost
function, essentially consists of two terms: the first one quantifies the fit of the model state
to available observations, and the second one quantifies its fit to a prior estimate (usually a
short-range forecast from a previous analysis), given statistics of observation and background
errors. The principle of variational data assimilation has been known for several decades (e.g.,
Sasaki, 1958; Lewis and Derber, 1985; Le Dimet and Talagrand, 1986). However, its high
computational cost has made it operationally available only recently. At European Centre
for Medium-Range Weather Forecasts (ECMWF), a three-dimensional variational assimilation
system (3D-Var: Courtier et al., 1998) replaced a previous scheme based on optimal interpola-
tion (Hollingsworth, 1987) in 1996. The inclusion of the time dimension of observations in the
analyses was achieved in 1997 with a four-dimensional variational assimilation system (4D-Var)
as described by Courtier et al. (1994). An important consequence of the recent introduction
of variational data assimilation in the operational weather centres is the necessity of accurate
parametrisations in the analysis procedure not only in terms of atmospheric fluxes but also in
terms of partial derivatives of the fluxes with respect to atmospheric variables (i.e. the Jaco-
bians). These derivatives are needed to estimate the gradient of the cost function during the
minimisation. This is placing an extra demand on modellers since it increases the requirements
for the validation of physical parametrisation schemes. Moreover, a minimisation process is
time-consuming when the description of the control variables is global. Therefore only fast
physical parametrisations can be linearised for global variational analyses of the atmosphere.
Examples of physical parametrisations for 4D-Var can be found in Janiskova et al. (1999) and
in Mahfouf (1999).

The present study examines two infrared radiation schemes for application in 4D-Var. They
use different parametrisations because developments have been performed independently. The
first model is a fast scheme for radiative flux computation that has been developed by Chéruy et
al. (1996) and Chevallier et al. (1998). This scheme is based on artificial neural networks. The
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second one is the Radiative Transfer for Tiros Operational Vertical Sounder (RTTOV: Eyre,
1991; Saunders et al., 1999) for satellite radiance computation. Each scheme is validated here
for variational assimilation by comprehensive comparison with a more physically-based scheme:
respectively the ECMWF operational wide-band model developed by Morcrette (1991) and the
narrow-band model Synsatrad (Tjemkes and Schmetz, 1997). Estimating the quality of their
Jacobians is not trivial. For a better understanding of the differences, they are converted
into flux perturbations with the tangent-linear approximation, and into atmospheric variable
increments with a one-dimensional variational assimilation system (1D-Var), where radiation
is the only physical process represented.

The plan of the paper is as follows. A description of the four infrared radiation models is
given in section 2. Section 3 presents the general formalism of 4D-Var and 1D-Var. Section 4
shows the validation of the neural network-based scheme with the ECMWEF operational wide-
band model in a variational framework. Similarly, the comparison between RTTOV-5 and
Synsatrad is detailed in section 5. Section 6 provides an overall summary.

2 Description of the radiation schemes

2.1 Two schemes for infrared broad-band flux computation

The ECMWF operational infrared broad-band radiation model (hereafter EC-OPE) com-
putes the atmospheric fluxes and cooling rates. The cooling rates are the vertical derivatives
of the net fluxes at each pressure level. As described by Morcrette (1991), the long-wave spec-
trum from 0 to 2820 cm™! is divided in EC-OPE into six spectral regions. The integration
over wavenumber is performed using a band emissivity method. The transmission functions
for water vapour and carbon dioxide over the six spectral intervals of the scheme are fitted
using Padé approximants on narrow-band transmissions obtained with statistical band models.
Clouds are represented by multi-layer grey bodies (Washington and Williamson, 1977). Recent
improvements to the scheme affect the description of the water vapour continuum and of the
ice cloud optical properties, as stated by Gregory et al. (1998). In the ECMWF operational
forecast model, radiative fluxes are currently updated once every three hours and at sample
points only, in order to save time in the rather expensive radiation computations (Morcrette,
2000). However, the code is still too slow for use in the variational analysis. Therefore a very
simple long-wave radiation model is used in 4D-Var. As described in Mahfouf (1999), it allows
perturbations of fluxes and cooling rates to be computed with respect to temperature variations
only.

In order to increase the time-space sampling, a faster version of EC-OPE, called NeuroFlux,
has been derived using a statistical approach, the multi-layer perceptron defined by Rumelhart
et al. (1986), together with the same cloud representation than in EC-OPE: the multi-layer
grey body model. Consistently with the latter, upward and downward fluxes are computed in
NeuroFlux as:

F(P) =) axFi(P) (1)

where P; is the pressure level, F} is the flux in the presence of a single layered black cloud
in layer k& or the clear sky flux (with the convention k = 0 for clear sky), and aj, is a weight.
The a;’s are functions of the layered cloud characteristics (cloud cover, liquid and ice water
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contents, particle size, ...; e.g., Ebert and Curry, 1992) and depend on the way cloudy layers
overlap (e.g., Geleyn and Hollingsworth, 1979). In EC-OPE, the F’s are computed by the
method summarised at the beginning of this section, whereas artificial neural networks are
used in NeuroFlux. The parameters of the neural networks are derived from EC-OPE using
a non-linear regression. The set of atmospheric profiles used to define the neural network
(the learning dataset) is described by Chevallier et al. (2000a). The validation of NeuroFlux
showed that it is seven times faster than the original code while its accuracy is comparable
to the accuracy of the ECMWEF operational scheme, with a negligible impact on numerical
simulations (Chevallier et al., 2000b).

2.2 Two schemes for satellite radiance computation

The RTTOV scheme is used operationally at ECMWF for the simulation of satellite bright-
ness temperatures. It can handle instruments like Advanced TIROS Operational Vertical
Sounder (ATOVS), Special Sensor Microwave Imager (SSM/I) or Meteosat. Version 5 of this
code (Saunders et al., 1999) is used here. The method, originally derived from the work of
McMillin et al. (1979), is single-band. It is based on two main approximations. The first one
is that the Planck function does not vary significantly on the spectral interval considered (the
spectral band of the satellite channel), so that a mean value of the Planck function can be
introduced for each temperature. The second approximation is the use of a regression fitting to
reference convolved line-by-line layer optical depths from the temperature and absorbing gas
profiles. The reference line-by-line computations for RT'TOV-5 come from GENLN2 version 4
(Edwards, 1992), with a water vapour continuum from the Clough et al. (1989) model, version
2.1. The temperature and absorbing gas profiles as inputs to the code are described on a fixed
43-level pressure grid.

RTTOV is compared here to Synsatrad, the narrow-band scheme developed at European
Organization for the Exploitation of Meteorological satellites (EUMETSAT). This method,
after Sneden et al. (1975), solves the monochromatic radiative transfer equation at uniformly
sampled wave numbers (Tjemkes and Schmetz, 1997). The water vapour continuum refers to
the Clough et al. (1989) model, version 2.2. The spectral resolution of the scheme depends
on the channel. As an example, 750 wave numbers are used for the 6.3 pm channel on the
Meteosat-7 platform, and 500 wave numbers are used for the 6.3 um channel on High resolution
Infrared Radiation Sounder (HIRS), second generation, on-board the NOAA-14 space-craft.

This corresponds to resolutions of respectively 0.67 and 0.28 c¢m L.

The present study focuses on five channels that are of particular interest for operational
weather forecasting: the water vapour sounding channels of HIRS on-board NOAA-14 at
12.5 pwm (HIRS-10), 7.3 pm (HIRS-11) and 6.3 pm (HIRS-12), the water vapour sounding
channel of Meteosat-7 at 6.3 um (Meteosat-WV), and the ozone sounding channel of HIRS
on-board NOAA-14 at 9.7 yum (HIRS-09). Restriction is made here to clear-sky modelling.
Carbon dioxide and minor absorbing gas concentrations are set to the estimated mean level for
year 2005. The surface emissivity is set to one.
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3 Generalities about variational assimilation

3.1 General formalism of 4D-Var

The 4D-Var system seeks an optimal balance between observations and the dynamics of the
atmosphere by finding a model trajectory x(¢) which is as close as possible to the observations
available during a given time period [to, t,]. The model trajectory x(¢) is completely defined
by the initial state xq at time t,.

The misfit to given observations y° and to an a priori model state x° called background is
measured by an objective cost-function defined as follows:

1

T(xa) = 50~ X§" B o — )+ S(Hx(1)] - v Re(Hxlt)) <) (@)

l\D |

where at any time ¢;, y; is the vector of observations, H; is the operator providing the equivalent
of the data from the model variable x(¢;), R; is the observation error covariance matrix (in-
cluding measurement and representativeness errors), and B is the background error covariance
matrix of the state x®. The background x® is usually provided by a short-range forecast. Su-
perscripts —1 and 7" denote respectively inverse and transpose matrix. The subscript ¢ denotes
the time index.

In equation (2), the observation operator H; includes a radiative transfer model for the com-
putation of model-equivalent satellite brightness temperatures, like RTTOV, if such quantities
are assimilated.

The model state x(;) is defined as :
x(t:) = M (ti; to)[xo] (3)

where M is the non-linear forecast model integrated from time ¢y to time ¢;. M may include
an infrared radiative transfer model for the computation of fluxes and cooling rates, like the
one described in Mahfouf (1999).

The control vector xq includes the prognostic variables to be initialised in the forecast model:
vorticity, divergence, temperature, specific humidity and surface pressure. The minimisation
uses a descent algorithm which requires several computations of the gradient of J with respect
to the initial state xg. Given the dimension of the state vector the adjoint technique is used to
provide an efficient estimate of V.J (Le Dimet and Talagrand, 1986):

VJ(xo) = B (x0 — x}) + Y HIR; ™ (Hifx(t)] - y2) (4)

1=0

The numerical coding of the transpose of tangent-linear versions of both the forecast model and
of the observation operators H; is required for such an efficient computation. The initial fluxes
of the non-linear model around which the linearisation is performed need to be re-computed, if
not stored, at each iteration of the minimisation.
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3.2 General formalism of 1D-Var

The principle of the 1D-Var is similar to that of 4D-Var, but the control vector x represents
only a single-column and the time dimension is not included. The cost-function reduces to:

T = 5 (x =X B x %) + S(H(x) ~ y) R (H(x) ~ y) (5

In the following, H is a radiation model, for instance RTTOV or EC-OPE. The control
vector x contains vertical profiles of temperature, specific humidity, and ozone. Given the
low dimension of the control vector, a perturbation method is used to compute the Jacobian
elements of the adjoint operator HT (i.e. the Jacobian matrix {0yx/0z;}x,). HT is required to
compute the gradient of the cost function:

VIx) =B '(x—x) +HTR Y (H(x) - y) (6)

The minimiser of the present 1D-Var code is a limited memory quasi-Newton method, the
M1QN3 software developed at Institut National de Recherche en Informatique et en Automa-
tique (INRIA) (Gilbert and Lemaréchal, 1989). Examples of applications of the 1D-Var code
can be found in Marécal and Mahfouf (1999) and in Fillion and Mahfouf (2000).

3.3 The background error covariance matrix

As shown in equations (2) and (5), the error covariance matrix B plays an essential role
in 1D- and 4D-Var by determining the spatial distribution of the information on the model
variables (McNally, 2000). The matrices that are used in the ECMWF 4D-Var are described
by Rabier et al. (1998) and by Derber and Bouttier (1999). The correlations are estimated by
assuming that the difference between forecasts at different ranges valid at the same time are
representative of short-range forecast error statistics, as is done by Parrish and Derber (1992).
Specific humidity and ozone correlations are sharp on the vertical, whereas atmospheric tem-
perature correlations are broad in the troposphere and in the lower stratosphere with negative
correlations between the two regions. No cross-correlation between the background error of
temperature, specific humidity and ozone is used. Mass and wind are coupled through a linear
balance operator. The standard deviations of forecast errors for temperature and ozone have
been derived with the same approach, whereas the water vapour standard deviations are com-
puted from an empirical formula (Rabier et al., 1998). An example of standard deviations of
temperature and humidity is given in figure 2 of Fillion and Mahfouf (2000). For temperature,
they are about one degree in the troposphere with higher values in the stratosphere, up to
4.5 K. The ozone standard deviations for unbalanced quantities (i.e. the fraction of the ozone
errors not coupled with wind errors) are shown in figure 1.

In the following, B is specified according to the operational 4D-Var for unbalanced quantities
at the corresponding vertical resolutions. Two vertical resolutions are used here: the 31- and
50-level grids that have been used operationally at ECMWF respectively between 1991 and
1998, and in 1999. For ozone, standard deviations are taken from the more recent 60-level
model and vertical correlations are set to zero.
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4 Validation of NeuroFlux for variational assimilation

4.1 The multi-layer grey body approach in NeuroFlux

As explained in section 2.1, NeuroFlux has been derived from a non-linear regression to the
ECMWEF operational wide-band model (EC-OPE). In the ideal case, its computations would
be identical to those of EC-OPE. In fact, the neural network parametrisation introduces some
uncertainty in the fluxes and cooling rates, as well as in the Jacobians. As shown by Chevallier
et al. (2000b), the accuracy of the method in terms of fluxes and cooling rates is high enough
in the context of a numerical model of the atmosphere. For assimilation purposes, it is also
important to have accurate Jacobians.

The Jacobians of NeuroFlux with respect to cloud characteristics are very similar to those of
EC-OPE, because both schemes rely on the multi-layer grey body approach to treat cloudiness.
Indeed, by differentiating equation (1), it can be written:

The day’s can be computed from the multi-layer grey body algorithm, with the same accu-
racy in NeuroFlux and in EC-OPE. This requires few computing time compared to the Fis and
dFys computation. As a consequence the uncertainty of the dF’s computed by NeuroFlux lies
in the Fi’s and dF}’s. In NeuroFlux, they are computed by neural networks with comparable
accuracy for each value of k.

4.2 Validation of the Jacobians

As an example of Fy, the clear-sky surface downward long-wave flux (SDLF) is considered
here. The comparison between the Jacobians of the clear-sky SDLF for temperature and water
vapour (i.e. the partial derivative of the flux with respect to temperature or water vapour)
computed by NeuroFlux and EC-OPE is shown in figures 2a and 2b in the case of a tropical
standard atmosphere (McClatchey et al., 1971). All the Jacobian elements for EC-OPE are
positive which means that an increase in water vapour or temperature will increase the SDLF.
Sensitivity of the SDLF to temperature is only significant near the surface and then decreases
exponentially with height. Its sensitivity to specific humidity is important over a deeper layer
of the lower troposphere up to 600 APa. The decrease of the Jacobian near the surface comes
from the dominance of water vapour absorption.

Compared to EC-OPE, the Jacobian of NeuroFlux for temperature appears irregular, though
still close to the reference computation. The wiggles originate from the statistical approach of
NeuroFlux. Indeed in a formal neural network, the information is propagated from its inputs
to its outputs by non-linear projections on successive spaces, that transform and filter it. The
localisation of the information, as on a pressure level grid, is partially lost. This has been
already observed by Aires et al. (1999) for the modelling of HIRS brightness temperatures.
The shape of the Jacobian for water vapour brings more concern. Not only the magnitude of
the Jacobian below 600 A Pa is underestimated, but NeuroFlux provides derivative values above
600 hPa that are higher than those of EC-OPE by several orders of magnitude. The reason of
such irregularities is that, as explained by Chevallier (1998), the variables in input to the neural
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networks are normalised by dividing each variable by its spread in the learning dataset. The
normalised Jacobians, as illustrated on figure 2c, have limited oscillations. When projected on
the physical space, using specific humidity as the water vapour variable, they convert into a
chaotic profile in the upper atmosphere, where the values of specific humidity are very low.

4.3 Use of a single mean Jacobian in conjunction with NeuroFlux

The Jacobian weaknesses of NeuroFlux make it difficult to use them in variational data
assimilation if significant water vapour increments are allowed by the B matrix (equation (2))
above 600 hPa. However, the accurate computation of finite-size perturbations of fluxes by
NeuroFlux (Chevallier et al., 2000b) suggests that NeuroFlux could be used to update the
fluxes at each iteration of the minimisation, if a suitable Jacobian is provided by another way

for the gradient computation. Such a configuration may solve the problem of computing time
posed by EC-OPE.

A single mean Jacobian matrix is built as follows. The global archive of ECMWEF 6-hour
forecast from 1 March 1998 at 00 UTC is used to compute a mean temperature and water
vapour profile, on the 31-level vertical pressure grid. The single mean Jacobian matrix is the
Jacobian of this mean profile.

The association of NeuroFlux with the single mean Jacobian matrix is tested for varia-
tional assimilation. Two experiments are performed. First perturbations of cooling rates are
computed. Then a 1D-Var scheme for the assimilation of surface fluxes is evaluated.

4.3.1 Impact on the computation of cooling rate perturbations

Perturbations of atmospheric temperature, specific humidity, liquid and ice water, cloud
cover and surface temperature, are estimated from the difference between the 6-hour and the
12-hour ECMWF forecasts valid for the first of July 1998 at 00 UTC. The resolution is of
2.5° x 2.5° (10,300 grid points). For instance, the typical size of temperature perturbations is
about one degree. Perturbations of long-wave cooling rates 6;C are then computed from the
model variable perturbations dx: §;C(dx) = C(x + dx) — C(x). Figure 3 presents the mean
and standard deviation of the non-linear cooling rate perturbations computed with EC-OPE,
with and without cloud-radiation interaction. Three latitude classes are considered: tropical,
mid-latitude and polar. Without cloud perturbations, standard deviations are below 0.5 K.d™!,
except near the surface, where they reach 1.5 K.d~! in average. Mean values are large only near
the surface where they reach 0.3 K.d~! in average for tropical and mid- latitude regions. With
cloud perturbations, standard deviations increase up to 3.5 K.d~!, with some perturbations
reaching up to 40 K.d~! (not shown).

This dataset is used to validate the single mean Jacobian approach. For the single mean
Jacobian approach, as for NeuroFlux, only the accuracy of clear-sky Jacobians matters if the
multi-layer grey body algorithm is used to parametrise cloud effects. Indeed, from equation (7)
it appears that:

k

Equation (8) is a good approximation when the perturbations §F; and day are small
(|0F| << Fy and |dag| << ai). For analysis increments, this approximation is valid for
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dF, but not for day. Indeed day can reach the size of ax. But in this case Fi(P;).day is the
dominant term in equation (8), as seen by the comparison between figures 3¢ and 3d, which
makes the approximation still accurate.

To estimate qualitatively the variations of the clear sky Jacobians, cooling rate pertur-
bations 0,C are computed from the temperature, specific humidity and surface temperature
perturbations of the dataset, using a first-order Taylor development: §,C(dx) = Jdx, where
J is the single mean Jacobian matrix defined above. Figure 4 compares the clear-sky non-
linear cooling rate perturbations from EC-OPE, §;C, and the linear perturbations ,C. The
differences between the two computations originate both from the tangent-linear hypothesis
and from the use of a single mean Jacobian matrix. They appear to be comparable to the
signal (i.e. the non-linear perturbations shown in figure 3), except below 900 hPa in the trop-
ical and mid- latitudes, where the standard deviation of the differences, as well as the bias,
are significantly smaller than the signal. Improvement in the polar class could be obtained
with a standard polar Jacobian. Because the comparison takes the tangent-linear hypothesis
into account, the performance of the single mean Jacobian is underestimated. As illustrated
below (section 4.3.2), the existence of a clear-sky Jacobian is important from the top of the
atmosphere to the surface.

Table 1 completes this study with the statistics of the corresponding boundary fluxes: the
outgoing long-wave radiation and the surface net fluxes. The error of the tangent-linear compu-
tation appears to be significantly below the signal. Indeed the error standard deviation is less
than 60% of the standard deviation of the clear-sky non-linear computation in every latitude
classes, with negligible biases (less than 0.2 W.m™2).

The variability of the clear sky Jacobians does not appear to play an essential role when
computing all sky flux and cooling rate perturbations. This may allow to use a single mean
Jacobian with NeuroFlux for variational data assimilation. This is further investigated in the
next section.

4.3.2 Impact on variational assimilation

The single mean Jacobian approach is further tested in a 1D-Var data assimilation, where
only its contribution determines the increments. Use is made of observations that were collected
at Billings (Oklahoma, U. S. A.) as part of the Atmospheric Radiation Measurement (ARM)
program (Stokes and Schwartz, 1994). A series of five clear-sky days in December 1997 is
selected to evaluate a 1D-Var assimilation of SDLF. Observations of SDLF (from a pyrgeometer)
were available on a two-minute basis and were processed to get hourly averages. Corresponding
hourly atmospheric profiles for temperature and specific humidity are taken from ECMWF
operational short-range forecasts. The profiles as well as the background statistics (the matrix
B of equations (2) and (5)) are described on a 31-layer vertical grid. The standard deviation
of error for the SDLF is set to 10 W.m 2 as suggested by the standard for measurements set
by the Baseline Surface Radiation Network (Heimo et al., 1993).

The time series of model SDLF and of SDLF from ARM observation are shown in figure
5¢ for the selected five days. The model systematically underestimates the observation fluxes
up to 20 W.m 2. The reader is referred to Chevallier and Morcrette (2000) for a discussion
about these differences. In this context, the 1D-Var iteratively modifies the temperature and
water vapour profiles in order to better match the observed SDLF within a range of background
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errors given by the covariance matrix B.

The result of the 1D-Var assimilation using the EC-OPE radiation scheme produces a series
of long-wave fluxes in better agreement with the observations as expected (figure 5¢). In
agreement with the vertical structure of the Jacobians (figure 2), the increase in long-wave flux
has been done mostly through an increase of water vapour in the atmospheric column. The
time series of the total column water vapour is shown in figure 5d.

In the single mean Jacobian approach, NeuroFlux is used in the 1D-Var to update the
SDLF at each iteration of the minimisation, whereas the single mean Jacobian matrix is used
to compute the gradient of the cost function. Figures 5a and 5b show that the increments of
SDLF and of total column water vapour computed by the single mean Jacobian approach are
in good agreement with those computed by EC-OPE. Also, the number of iterations that is
needed by the 1D-Var scheme to converge is about 25% smaller with the single mean Jacobian
approach than with EC-OPE. This clearly indicates that the association of NeuroFlux and
of the single mean Jacobian is reasonably consistent. Moreover, the use of a pre-computed
Jacobian is obviously faster than an explicit computation.

4.4 Summary

The neural network-based Jacobians contain features that are considered not to be realistic.
During the learning phase of the neural networks, a non-linear regression is performed to
produce accurate fluxes and cooling rates. The inclusion of the Jacobians in the non-linear
regression would increase the number of constraints by two orders of magnitude. This can be
achieved with more complex neural networks, but the model would then be computationally less
efficient. Now, the computational burden prevents EC-OPE to be introduced in the variational
analysis and faster solutions are studied. An approach is proposed for variational assimilation,
in which NeuroFlux only updates the fluxes in the minimisation, or re-computes the initial ones
if the incremental 4D-Var is used. The gradient computation is performed with a single mean
Jacobian. Both results from 1D-Var assimilation and tangent-linear approximation show that
this approach is able to provide fast computations with good accuracy.

5 Comparison between RTTOV-5 and Synsatrad

5.1 General

RTTOV and Synsatrad have been already compared for brightness temperature and Jaco-
bian computation in the GEWEX Water Vapor Project (GVaP) where 23 models have been
analysed with respect to the 6.3 um channel on-board NOAA-14 (Soden et al., 2000). It was
confirmed that Synsatrad is in better agreement with line-by-line models than RTTOV. In
particular, the behaviour of RI'TOV Jacobians for water vapour was shown to be significantly
different from that of the other models. A comparison of some 15 models in the framework of
the International ATOVS Working Group (ITWGQG) is enlarging the comparison to six channels
of HIRS. The present study completes these previous results. In addition to Eyre et al. (1993),
who showed the positive impact of using RTTOV in the ECMWF analysis system through
a 1D-Var retrieval, the present study compares its Jacobians to those from a more accurate
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scheme: Synsatrad. Compared to the previous Jacobian inter-comparisons, an interpretation
of the Jacobians in terms of increments of geophysical quantities, via the 1D-Var, is provided
here.

5.2 Comparison of brightness temperatures

To compare RTTOV and Synsatrad, a representative set of atmospheric profiles is used
(Chevallier, 1999). It has been obtained by a random selection of 150 situations among a large
set of 13,700 carefully sampled ECMWEF global 6-hour forecasts. 28 extreme profiles have been
added. Unlike temperature and specific humidity, ozone comes from a climatology dependent
on season and latitude (Fortuin and Langematz, 1994). In order to avoid any artefact due to
orography, only profiles with a surface pressure higher than 950 hPa are used here: 103 cases.
49 of them are taken from high- and mid- latitude situations (i.e. latitudes higher than 30°
in absolute value), and 54 are located in the tropical band. These profiles, defined on a 50-
level vertical grid, are interpolated on the RTTOV fixed 43-level grid. Therefore, the radiation
computations are performed at the same resolution for both RTTOV and Synsatrad.

Table 2 presents the comparison between RTTOV and Synsatrad for the computation of
the brightness temperatures in channels HIRS-09, -10, -11, -12 and Meteosat-WV. In the high-
and mid- latitude situations, mean differences are below 0.4 K with standard deviations up to
0.7 K. Differences are slightly higher for tropical latitudes, with biases and standard deviations
up to 0.9 K. These numbers are comparable to the validation statistics of RT'TOV-5 shown
by Saunders et al. (1999), even if the sign of the biases may differ. Indeed, as explained in
section 2.2, Synsatrad solves the monochromatic radiative transfer equation, and therefore is
more accurate in principle than RTTOV-5, but is still not a line-by-line model. Differences in
the reference line-by-line computations of the two schemes, like the water vapour continuum
versions used (versions 2.1 and 2.2 of the Clough et al. -1989- parametrisation), are not likely
to affect the results to a significant extent.

The higher bias occurs for Meteosat-WV in the tropics: 0.9 K. It is associated with a
standard deviation of 1 K. This result is confirmed by the passive monitoring at ECMWEF of
the Meteosat-7 instrument, located on the equator at longitude zero. Figure 6 shows a bias of
1 K between the two schemes throughout the 40-day period presented. The bias between the
radiances computed with the two schemes appears to be far more stable than the difference
between the radiances observed and those derived from the model 6-hour forecast. The reader
is referred to Munro et al. (1999) for a discussion about the differences with the observations.
The Meteosat-WV bias is further investigated in section 5.4.

5.3 Comparison of 1D-Var increments

The 1D-Var scheme described in section 3.2 allows for a further comparison between RI'TOV-
5 and Synsatrad. The global 103 profile set is used. 1D-Var increments are computed on the
50-level grid, so that the corresponding ECMWF error statistics can be applied. A vertical
interpolation scheme is provided between the minimiser and the radiation models, that are
both applied on the RTTOV fixed 43-level grid.

Simulated observations are constructed by adding 1 K to the 1D-Var first-guess brightness
temperature, with respect to each code. A 1 K standard deviation for the observation uncer-
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tainty is specified for each channel. Tests with a 0.5 K standard deviation show similar results,
differing only in the amplitude of the signals. Resulting 1D-Var increments of temperature,
water vapour and ozone for each channel are examined. The conclusions for channels HIRS-11,
-12 and Meteosat-WV are very similar. Therefore results for HIRS-11 and Meteosat-WV are
not presented.

5.3.1 HIRS-09

As seen in table 3, the 1D-Var brightness temperature increments are small for HIRS-09,
in particular in the high- and mid-latitude regions where the mean increment reaches 0.1 K
only. Higher increments (0.3 K in the high- and mid-latitude regions) can be obtained if
surface temperature is introduced in the 1D-Var control variables. Note that the increments
would reach 1 K if no background term was specified in the cost function (equation (5)). Of
course, they would be zero if the observation term was omitted. The corresponding Jacobians
for ozone, shown in figure 7, peak at about 350 hPa, with higher values in the tropics than
in other latitudes, whereas the maximum values of the ozone profiles, in kg.kg™!, occur at
about 10 hPa. As a consequence, HIRS-09 is mostly sensitive to a region of the atmosphere
in between, about 200 hPa, where only low increments of ozone, in kg.kg !, are allowed in
the 1D-Var because of the background term, as shown in figure 1. As shown in figure 7, the
RTTOV derivative values above 400 hPa are smaller than those of Synsatrad in the tropical
regions. In the other regions, they are in good agreement.

The Jacobians for temperature, not shown, have their maximum higher in altitude, about
25 hPa, with a second local maximum at about 900 hPa. The corresponding temperature
increments in the 1D-Var are very small in the tropical regions, less than 0.04 K, and are
higher in the other latitudes, up to 0.2 K in average, with a good agreement between RTTOV
and Synsatrad (not shown).

The ozone increments are shown in figure 8. Consistently with the previous comment, the
specific ozone increments peak at about 30 hPa, whereas the relative change of ozone mostly
occurs at 200 hPa. As the gradient of the specified ozone error standard deviations (figure 1)
is sharp at 200 APa, the reduction of the Jacobian values above 400 hPa from Synsatrad to
RTTOV makes the ozone increments smaller for RTTOV.

5.3.2 HIRS-10

The brightness temperature increments are larger for HIRS-10 than for HIRS-09: respec-
tively about 0.30 and 0.65 K in the high and mid-latitude regions and in the tropical ones
(table 3). Jacobians have their maximum in the low troposphere for the temperature and
around 450 hPa for the water vapour (see figure 9 for the high and mid-latitude regions).
There is no ozone absorption in this channel. Compared to Synsatrad, RI'TOV-5 has smaller
temperature Jacobians, and larger, somewhat irregular, water vapour ones.

The 1D-Var temperature and water vapour increments are shown in figures 10 and 11 for the
high and mid-latitude regions. The shape of the temperature increments reflects the specified
background error covariance matrix, that includes negative correlations between temperature
errors in the lower stratosphere and those in the troposphere (section 3.3). Temperature and
water vapour increments are similar for both models in value as well as in shape. The Jacobian
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differences shown in figure 9 do not seem to be significant for variational data assimilation
applications.

In the tropics, the brightness temperature increments are mainly due to specific humidity.
Water vapour increments are similar for both schemes (not shown).

5.3.3 HIRS-12

The brightness temperature increments for HIRS-12 are similar with RT'TOV and Synsatrad:
between 0.75 and 0.85 K (table 3). Jacobians have their maximum at about 500 hPa for
temperature and at about 250 hPa for water vapour (figure 12). If those for temperature are
similar between the two models, the water vapour Jacobians have a clear distinct behaviour.
RTTOV values are more than twice as high than for Synsatrad. Also, the maximum is higher
in altitude with RTTOV. As expected the increment difference appears more for water vapour
than for temperature (figures 13 and 14). Indeed mean relative changes of water vapour reach
40% with RTTOV at 200 hPa while not exceeding 20% with Synsatrad. Of course, these
relative changes at 200 hPa correspond to small absolute amounts of water vapour (figure 14c).

5.4 Discussion

For the five channels studied (HIRS-09, -10, -11, -12 and Meteosat-WV), differences in
computed brightness temperatures between the RI'TOV and Synsatrad have usually less than
half a degree bias and standard deviation. Jacobians for temperature appear to be in good
agreement, while the width of HIRS-09 Jacobian for ozone in the tropical regions appears to
be higher with Synsatrad. HIRS-11, HIRS-12 and Meteosat-WV Jacobians for water vapour
are significantly different between the two codes, in shape as well as in the vertical location of
the maximum. Differences reduce for HIRS-10 that peaks lower in altitude.

These differences in Jacobians translate into differences in 1D-Var increments controlled by
the specified background error statistics. As a consequence, the previous increment differences
are mainly specific to ECMWF, from which system these statistics were taken. In the present
study, only water vapour increments for HIRS-11, HIRS-12 and Meteosat-WV significantly
differ between the two models.

Due to a more physical computation method, Jacobians of Synsatrad are expected to be
closer to the truth than RTTOV. Soden et al. (2000) also show a deficiency of HIRS-12 RTTOV
Jacobians for water vapour. As described in section 2.2, RTTOV is based on two approxima-
tions: the invariance of the Planck function on the channel width and the computation of
optical depths through a linear regression.

The first approximation is explored with Synsatrad as follows. Single-band convolved trans-
missions are computed with the narrow-band model for the five channels considered here. They
are used to calculate the radiance L; in a channel 7 in a way that is consistent with RT'TOV-5:

N
k=1

N is the number of vertical layers, B;(T) is the mean Planck function in channel i for tempera-

ture T, 7;(k) is the convolved transmittance in channel ¢ from the top of the atmosphere (level

1) to level k, T} is mean temperature in layer k.
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Statistics of the difference between the approximate brightness temperatures and the full
Synsatrad computation on the 103 profile dataset are shown in table 4. Biases and standard
deviations are below 0.1 K in absolute value for all channels, except for Meteosat-WYV, where
a bias of 0.5 K is found. This bias carries the same sign as the one between RTTOV and Syn-
satrad, but is not latitude-dependent as the latter (see table 2). Indeed different sources of error
add or compensate between RT'TOV and Synsatrad. Table 4 suggests that the invariant-Planck-
function approximation is important to explain the differences observed for Meteosat-WV. This
is not surprising given the Meteosat-WV spectral width, ranging from 1350 to 1850 cm ™!, to
be compared with HIRS-12 ranging between 1420 to 1560 em ™! only. The low associated stan-
dard deviation (0.1 K') suggests that a simple bias correction is able to remove that particular
problem. As far as the Jacobians are concerned, only small impact is found on Meteosat-WV
as well as on HIRS-12 (not shown).

Therefore the second approximation on which RTTOV relies, namely the use of a linear
regression to derive the optical depths, is likely to be responsible for the low accuracy of RTTOV
6.3um and 7.3um water vapour Jacobians. Tests have been performed to use a non-linear
regression (neural networks) for brightness temperature computation. They are illustrated
on figure 15. Jacobians for water vapour are not any better than those of RT'TOV, whereas
Jacobians for temperature are slightly less accurate. Thus improvements of RT'TOV may be
expected more from a better quality of the regression dataset (e.g., Chevallier, 1999) and from
more adequate predictors (e.g., Matricardi and Saunders, 1999). The interpolation of the water
vapour profiles of the current regression dataset between 100 and 300 hPa (as explained by
Saunders et al., 1999) may be the main reason for the bad Jacobians (R. Saunders, personal
communication, 2000; see also figure 12b).

6 Conclusion

Variational methods are increasingly used for data assimilation in operational weather cen-
tres. They provide statistically optimal analyses of the atmosphere when error statistics and
Jacobians are correctly specified. The evaluation of Jacobians for variational data assimilation
has to be related to the complete framework including the specified error statistics. As an
example, the differences between RTTOV and Synsatrad Jacobians were shown to be strongly
influenced by these statistics when they are converted into 1D-Var increments.

Neural network-based Jacobians for broad-band infrared radiation were shown to be deficient
for water vapour. However, the random structure of the derivative error allows to use NeuroFlux
with a single mean Jacobian in the variational context. Errors produced by this approach are
small. Clouds are the major modulator of fluxes and cooling rates and are accounted for in
the framework of the multi-layer grey body approach. Therefore, accurate and fast long-wave
broad-band radiation computations can be introduced in 4D-Var with the single mean Jacobian
approach to compute increments and derivatives, and NeuroFlux to re-compute the trajectory
around which the linearisation is performed.

For satellite brightness temperature modelling, RTTOV Jacobians were also shown to be
deficient for water vapour for the 6.3 ym and 7.3 um channels with a significant impact on
the 1D-Var retrievals. The mean shape of the increments are similar to those of Synsatrad,
but the signal amplitude differs. This may explain why the inclusion of RT'TOV in variational
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data analysis for the assimilation of such channels positively impacts the quality of the opera-
tional analyses and forecasts, particularly in the southern hemisphere and tropics (McNally and
Vespérini, 1996). Smaller weaknesses for temperature and ozone, as well as for water vapour in
the 12.5 pm channel (HIRS-10) do not significantly impact the increments. Further improve-
ments to RI'TOV are expected from on-going work in the framework of the Numerical Weather
Prediction Satellite Application Facility (NWP/SAF) funded by Eumetsat, where both the
regression data-set and the choice of the predictors are being revised.
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(a) Outgoing long-wave radiation

polar mid-latitude tropical
M o M o M o
TL - NL clear sky || -0.02 0.70 | 0.03 1.20 | -0.14 1.46
NL clear sky -0.13 1.49]-0.19 236 | 0.11 2.84
NL total sky 0.11 5.71|-0.19 11.78 | 0.74 17.27
(b) Surface net long-wave flux
polar mid-latitude tropical
M o M o M o
TL - NL clear sky || -0.04 1.75| 0.01 0.64 | 0.15 1.00
NL clear sky 0.16 294 | 0.04 4.52]-0.19 3.86
NL total sky 1.36 10.57 | 0.39 13.69 | 0.39 9.57

Table 1: First row of each table shows the mean (M) and standard deviation (o) of the compar-
isons between tangent-linear (TL) and non-linear (NL) clear sky outgoing long-wave radiation
and clear sky surface net flux perturbations. Middle row shows the mean and standard devia-
tion of the NL clear sky flux perturbations. Bottom row shows the mean and standard deviation
of the NL total sky flux perturbations. The perturbations are taken from the difference between
the ECMWF 6- and 12- hour forecasts for 1 July 1998 at 00 UTC. The fluxes are in W.m 2.
Results are shown in three latitude classes.
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0

(a) High and mid-latitudes

HIRS-09 HIRS-10 HIRS-11 ~ HIRS-12 MET. WV

M o M o M o M o M o

RTTOV-5 - Synsatrad | -0.3 04| -0.1 0.2 04 04 03 0.7 0.0 0.7

Synsatrad 2499 1331|2675 14.6 | 251.3 7.4 2393 6.3]239.1 6.3
(b) Tropical latitudes

HIRS-09 HIRS-10 HIRS-11 ~ HIRS-12 MET. WV

M o M o M o M o M o

RTTOV-5 - Synsatrad | -06 01| -05 03| -01 05| -02 09| -09 1.0

Synsatrad 274.3 3.0 2874 3.1|261.2 45| 2455 6.1 |245.5 6.0

Table 2: Statistics of the comparison of Synsatrad and RTTOV-5 for the computation of

brightness temperatures, in K.
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(a) High and mid-latitudes

HIRS-09 HIRS-10 HIRS-11 HIRS-12 MET. WV
Mean 67, RTTOV-5 0.10 0.29 0.64 0.80 0.81
Mean 67}, Synsatrad 0.11 0.30 0.62 0.75 0.75
(b) Tropical latitudes

HIRS-09 HIRS-10 HIRS-11 HIRS-12 MET. WV
Mean 67, RTTOV-5 0.28 0.66 0.78 0.84 0.84
Mean 67} Synsatrad 0.31 0.63 0.77 0.83 0.83

Table 3: Mean brightness temperature increment (073) of the 1D-Var using either RTTOV-5
or Synsatrad.
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0

High and mid-lat.

Tropical latitudes

M o M o
HIRS-09 -0.1 0.0 | -0.1 0.0
HIRS-10 0.0 0.0 0.0 0.0
HIRS-11 0.1 0.0 0.1 0.0
HIRS-12 -0.2 0.1]-0.1 0.1
Meteosat WV || -0.5 0.11]-0.5 0.1

Table 4: Test of the impact of the spectral integration approximation used in RTTOV. Differ-
ence between the computation of brightness temperature with Synsatrad in the narrow-band
mode and that with Synsatrad using the approximation (approximation minus narrow-band,

in K).
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Figure 1: Profile of background error standard deviations for unbalanced ozone.

22

NWP/SAF Report No. 2



Evaluation of Jacobians for variational data assimilation S
(a) (b)
0 F w w w 0 w w w
o EC-OPE - EC-OPE
i NeuroFlux + Neur oFlux
200 % 1 200 ]
T n < x
a + o 4
< : £ L |
= 400 F - ] S 400 | . )
o * @ . '
- r -l 4 +
) - [3) 4
% 600 f - 1 5 600 N ]
& & .
800 | . 800 | . 1
1000 L e 0000 . e S
05 0 05 1 15 2 25 3 35 -1500 -1000 -500 0 500 1000 15

Jacobian for temperature (W/m2/K) Jacobian for water vapour (W/m2/(kg/kg))

0 \ "
+ NeuroFlux -
200 | L ]
< . "
o :
< .
o 400 B .
3 .
i | +
()] +
Z 600 + . ]
E +
800 - . 1
1000 t ‘ ‘ N L4

-6000 -4000 -2000 O 2000 4000 6000
Normalised Jacobian for water vapour

Figure 2: Jacobians of surface downward flux for temperature (a) and water vapour (b) as
calculated by EC-OPE and NeuroFlux for the standard tropical atmosphere. The higher part
of the neural network Jacobian for water vapour does not appear because NeuroFlux provides
values above 300 APa that are higher than those of EC-OPE by several orders of magnitude.

The neural network Jacobian for water vapour, normalised in the neural network space, is
shown in (c).
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Figure 3: Mean (top row) and standard deviation (bottom row) of the clear sky (left column)
and the total sky (right column) non-linear cooling rate perturbations, in K.d~!. The pertur-
bations are taken from the difference between the ECMWF 6- and 12- hour forecasts for 1 July
1998 at 00 UTC. Results are shown in three latitude classes.
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Figure 4: Mean (a) and standard deviation (b) of the comparisons between tangent linear and
non-linear clear sky cooling rates, in K.d~!. The tangent linear approach uses a single mean
Jacobian. The perturbations are taken from the difference between the ECMWF 6- and 12-hour
forecasts for 1 July 1998 at 00 UTC. Results are shown in three latitude classes. On (b), the

standard deviation of the error in the polar class reaches 3 K.d~! at the surface, whereas they
are below 0.6 K.d~! in the other latitudes.
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(a) Downward long-wave flux increments (b) Total column water vapour increments
5 ; ; 03 ;
& EC-OPE -+ EC-OPE -+
£ NeuroFlux + Mean Jac. —— < 0.25 NeuroFlux + Mean Jac. ——
A &
5 g oz}
B 5 5 o015f
= a1l
— g
B € o5
: :
0
g s 2
z © oo} 1
-
-20 L L L i L L -0.1 L L L L L
20 40 60 80 100 120 20 40 60 80 100 120
Hour Hour
(c) Downward long-wave flux time series (d) Total column water vapour time series
300 ; ; ; 14
< model forecast -
£ 1D-var analysis - ~ 1.2
3 280 + observation x %
E] 3 1
g 260 ] 3
.g g 0.8
2]
o & o6
S 20 g
S
g § 04
S 220 | E
= O 02 F 4
-
200 L L L L L O L L L L L
20 40 60 80 100 120 0 20 40 60 80 100 120
Hour Hour

Figure 5: (a) shows the difference between the downward long-wave flux from a 1D-Var analysis
using either EC-OPE or the single mean Jacobian approach, and the flux measured at ARM-
SGP site by a pyrgeometer. The corresponding time series of total column water vapour
increments are shown in (b). Flux and total column water vapour values are presented for EC-
OPE on (c) and (d) respectively. In the single mean Jacobian approach, NeuroFlux is used to
update the trajectory. The gradient computations are performed with a single mean Jacobian
matrix.
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Figure 6: Comparison between the ECMWEF 6-hour forecast and the Meteosat-WV observation
from 16 November 1999 to 25 December 1999. The 6-hour forecast is converted into Meteosat-
WYV radiance with either RT'TOV or Synsatrad. The upper curve shows the difference between
the computation using Synsatrad and the observation. The lower curve shows the difference
between the computation using RTTOV and that using Synsatrad.
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Figure 7: HIRS-09. Mean Jacobian for ozone from Synsatrad and RTTOV for the high and
mid latitudes (a) and for tropical latitudes (b) at the first iteration of 1D-Var.
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Figure 8: HIRS-09, tropical latitudes. Statistics of ozone increments, in %, of Synsatrad
(a) and RTTOV (b). The statistics expressed in terms of specific ozone values, in kg.kg™", are

shown in (c) for Synsatrad.
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Figure 9: HIRS-10, high and mid-latitudes. Mean Jacobians for temperature and water
vapour from Synsatrad and RT'TOV at the first iteration of 1D-Var.
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Figure 10: HIRS-10, high and mid-latitudes. Statistics of the temperature increments
from Synsatrad (a) and RTTOV (b).
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Figure 11: HIRS-10, high and mid-latitudes. Statistics of the water vapour increments
from Synsatrad (a) and RTTOV-5 (b), in terms of relative change of specific humidity. The
statistics in terms of specific humidity are shown in (c) for Synsatrad.
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Figure 12: HIRS-12, high and mid-latitudes. Mean Jacobians for temperature and water
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Figure 13: HIRS-12, high and mid-latitudes. Statistics of the temperature increments

from Synsatrad (a) and RTTOV (b).
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Figure 14: HIRS-12, high and mid-latitudes. Statistics of the water vapour increments
from Synsatrad (a) and RTTOV-5 (b), in terms of relative change of specific humidity. The
statistics in terms of specific humidity are shown in (c) for Synsatrad.
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Figure 15: Meteosat-W'V. Illustration of the tests performed to simulate Synsatrad with a
formal neural network. Comparison of Synsatrad Jacobians with those of a neural network
trained with Synsatrad for a case at latitude 25°N. In order to avoid the scaling problem
mentioned in section 4.2, the Jacobian for water vapour is set to zero above 40 hPa. Also the
regularisation technique of Aires et al. (1999) is used, which allows for smooth Jacobians. The

corresponding error in brightness temperature is 0.3 K.
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