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Summary : The use of the Kalman filter as an assimilation scheme in oceanography is
increasing. The Kalman filter gives the best linear unbiased estimator of the model state only
if the first and second order statistics of the observational and system noise are correctly
specified. If not, an adaptive filter can be used to estimate both the state vector and the noise
statistics. Here, we present two different adaptive Kalman filter schemes. The adaptive
algorithms have been used in a reduced space linear model of the tropical Pacific to estimate
the system noise covariance matrix. The adaptive filter has also been implemented for

serially correlated system or observational noise.

1. INTRODUCTION

Sincey oceanic initial conditions are poorly known and numerical ocean models are imperfect,
data assimilation is an essential component for an ocean prediction system Among several
assimilation methodologles, the Kalman filter (Kalman 1960, hereafter KF) is an efficient
approach to assimilate different types of observations and propagate the corrections to other
model variables. Moreover, the KF provides estimates of the forecast and analysis errors.
However, because of the computational burden, the use of such a sophisticated assimilation
method for oceanographic observations, has been limited to very simple and coarse resolution
models (e.g. Miller and Cane, 1989 ; Ghil and Malanotte-Rizzoli, 1991 ; Evensen, 1992).

Consequently, a number of simplifications.haVé been proposed for applications of the filtering
techniques to the atmosphere and the ocean (Todhng and Cohn, 1994 ; Cohn and Todling, 1996)
One of the solution we can mention is the « reduced order » filter which Computes the forecast

error covariances in a space of reduced dimension, using coarser resolution models (Fukumori
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and Malanotte-Rizzoli, 1995) or some other reduction operator (Cohn and Todling, 1996 ; Cane et
al., 1996). Those schemes are briefly discussed in section 2.3.

The optimality of the KF depends on the assumption that we know perfectly the statistics of the
observational and system error. Actually, misspecification of the statistics can lead to the
divergence of the KF (Jazwinsky, 1970 ; Fitzgerald, 1971). Obviously, in the oceanic context, the
statistics of the errors, particularly the system errors, are most often very hard to correctly
specify. Moreover, the specification of the observational and system errors in the reduced space
have to account for the truncation errors.

However, with the adaptive KF the observations can be used to improve the representation of
the noise statistics as well as the estimation of the ocean state (Gelb 1974). In the present paper,
we focus on two adaptive schemes that are implemented for a reduced order KF. We briefly

discuss their application in a twin experiment performed in the tropical Pacific context.

2. THE EXTENDED KALMAN FILTER
21 General notations for the assimilation pfoblem

The notations used in the present document are those recommended by Ide et al. (1997). The

evolution of the ocean model from time t;_; to time t; is governed by the equation :

x* (&) = M1 [% (ti1)] (1)
where the ocean forecast xf and analysis x? are column vectors of dimension 7, where 7 is
usually given by the number of prognostic variables of the numerical ocean model times its
number of grid points or by the number of spectral modes. Mj is the dynamics operator, which is

generally non linear.

The true ocean state x! differs from (1) by random or systematic errors and its evolution is given
by: '

x'(t;)= Mi—l[xt(ti—l)]"' M1 | (2)
where n accounts for the modeling and forcing errors, hereafter referred to as system errors.
Generally, the system noise is assumed to be white in time, to have zero mean with spatial
covariance matrix Q, which is positive definite : |

E[ni]=0; E[ni nf1= Qi §j 3)

The observations at time t; are related to the model variables by the equation:
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yi =H; [xt(ti)]*Si B @
where y{ is a column vector of dimension p; equal to the number of observations available at t;,

and H is the observation operator. As M, this operator can also be non linear and it can depend
on time when the observation network is not fixed. g; is the observational noise, which is

assumed to be white, with zero mean and spatial covariance matrix R..
Elei] =0 ; Elsi &/ 1= Ri 3y (5)

The observational and system errors are assumed to be uncorrelated.

22 Principle and basic algorithm

The KF is a sequential-estimation approach to data assimilation. It gives an estimate x3(k) of the

true ocean state as a linear combination of the observations and the model forecast :

X (t) = (1) + Kid | (6)
where d; is the innovation vector given by :
dj =yy ‘Hi[xf(ti)] | @

K is the gain matrix which depends on' the. relative accuracy of the predictions and the
observations :

-1
K; =Pf'(ti)HiT[Hin(ti)HiT+Ri] | o (8)
In the Extended Kalman Filter (EKF, Gelb, 1974; Ghil and Malanotte-Rizzoli, 1991), the

linearization M = M' et H = H' are introduced and the forecast errors covariance matrix is

calculated as

| PF(t:) =M, 1P (ti1)M]; + Qi - ©)
The forecast error covariance matrix appears as the sum of the estimated errors propagated by
the model dynamics and the system errors (9). This is the most costly step of the KF since it

requires 2 11 integrations of the tangent linear model M to obtain the term M P2 MT.

The analysis errors covariance matrix is given by »
P2 (1) =[1-KH; P (6 [I-KiH; | +KiRiK o (10)
which for the Kalman gain (8) yields the simplified equation o
PA() =[1-KH; [P () (11)
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From a numerical point of view, (10) should be preferred to (11) to make sure that P2 is
symmetric positive definite, even though the calculation is more costly. When simplifications are
introduced in the calculation of K then only (10) holds.

23 Order reduction
231  Principle of the reduced order Kalman Filter

We assume that the simplification opératbr is denoted by S (r,n) where r is the dimension of the
reduced space, with 7 << 7. For the reduced order EKF (ROEKF), the analysis is given by :

x? (ti)= Xf(ti)'i's-—IKridi : (12)

Kr (7,p) is the reduced gain matrix, which writes :

K =Prf(t; e [HaPef (1 )T + Ry ]’1 a3
the forecast errors covariance matrix in the reduced space being given by Prf
Prf(t;) = Mr_1Pr? (b )M | + Q4 (14)
The analysis errors covariance matrix is given by
Pr? =[1-KrHr P | : (15)

with Hr = H ST and Mr = S M S-L. The observational and system error matrix, Rr and Qr

respectively, are defined in the reduced space taking into account the truncation errors.

232 Defining the simplification operator

A first approach to reduce the dimension of the problem consist in computing the forecast error-
covariances with a coarser-resolution model than the model used to forecast the state itself
(LeMoyne and Alvarez 1991 ; Hoang et al., 1995). Using such a simplification operator and the
steady state limit of the forecast error covariance matrix Fukumori and Malanotte-Rizzoli (1995)
have developed the first application of an approximate KF for a non linear primitive equation
ocean model. ‘ |

To avoid the drawbacks of coarse resolution, Cane et al. (1996) have adopted a different
approach : using a multivariate empirical orthogonal function (EOF) analysis, they reduced the
state space for the forecast covariance update to a small set of basis functions, which nonetheless
‘represented all of the significant structures that were predicted by the model. The procedure was
shown to lead to a substantial saving without any loss of accuracy compared to a grid point KF.
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Cohn and Todling (1996) have proposed two suboptimal Kalman-like filters for reducing the
computational cost of the KF algorithm. The first scheme, the Partial Singular value
decomposition Filter (PSF), is based on the most dominant singular modes of the tangent linear
propagator. This scheme assumes that most of the propagated analysis error covariances is due
to a small collection of the model’s most rapidly growing singular modes. The second scheme,
the Partial Eigen decomposition Filter (PEF), is based on the most dominant eigenmodes of the
propagated analysis error covariance matrix. The propagated analysis error covariance is then
replaced by the leading part of its decomposition. An experiment with unstable dynamics was

performed with these two schemes. otherwise it diverges.

The compared theoretical properties of these reduced order filters will not be detailed here. But,
it can be shown that all the unstable modes (and neutral modes) of M should be included in the
sub-space defined by S (Cohn and Todling, 1996 ; Hoang et al., 1996) to insure the stability of the
ROEKEF. Thus, detectability (observability of unstable modes) and stabilizability (controllability
of unstable modes) issues should constrain the choice of the reduction space for the
implementation of the ROEKF (e.g. Kucera, 1972).

3. ADAPTIVE KALMAN FILTERING
31 Principle and basic algorithm

In principle, an adaptive filter can estimate both the system and the observational errors.
However, adaptive algorithms that try to update both the observational noise and the system
noise are not robust, since it is not easy to distinguish between errors in Q and R (Groutage et al.
1987 ; Maybeck 1982 ; Daley 1992-b). Since the observational errors are generally much better

known than the system errors, we will focus on the estimation of Q.

311 Definition of the maximum likelihood function

The adaptive schemes that are described below make use of the innovation sequence covariance
to estimate the noise statistics (Maybeck, 1982 ; Dee, 1995 ; Blanchet et al., 1997). The adaptive
Kalman filters are implemented in the reduced space since their computational cost in the full

space is prohibitive.

Let us define o as the M-dimensional vector of the unknown noise parameters describing Qr. o is
estimated by maximizing ihe conditional probability density function p(Dn(tk) | D(tk-N), @)
where D(k) denotes the innovation sequence during the last N steps (d(tk-N+1), -.. , d(tk)) and
D(t;) denotes the innovation sequence during the first i steps (d(t), ..., d(t;)). We assume that the
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system noise statistics are approximately constant on the assimilation window defined by the N
steps. This window has been defined in order to avoid the divergence of the estimation of Qr
that could be due to a »bad » observation. This might happen when only one innovation sample
is used as it was the case in Dee (1995). Dee pointed out that single-sample covariance estimation
is only reasonable if the number of observations is more than two orders of magnitude larger
than the number of parameters to be estimated. He also showed that the simultaneoﬁé_
estimation of several parameters led to a large variance of the single-sample estimates. Since the
number of observations is rather small in the oceanographic context, we would recommend to

use a sufficiently large window.

Using repeated applications of Bayes' rule, we can write

p(Dn(tx)| Dlte-n) @)= -=kI-k11\£(1di| D(ti-1). ) (165

Assuming that d is a gaussian variable with zero mean and covariance matrix Cp(a), we have : =
~P -1 1 ~ ‘
p(di| D(t;i—1), &) = (27) A(dEt(Co(ti&))) % exp[—adfcol(ti,g)di] (17)

The maximum likelihood estimator obtained by maximizing (16) can be obtained as well by
minimizing the following functional J(o) -
k

)= X

i=k-N

The innovation covariance matrix Cp can be related to the system noise covariance matrix Qr :

ct

[m(det(co(ti,g)))+d?c51(ti,g)di] (18)
+1

Co(ti, &) =HgPHe| + R = HyMn_ 1P M| Hx! + HqQn_Hz! + Ry (19)

With such an adaptive scheme, a parameter estimate is produced only every N samples, yielding .
slower initial convergence to a good estimate, specially if the initial guess is far from the true
value. Moreover, if we admit that the parameters can vary slowly, then it introduces an inherent
lag in estimating a parameter change. The effects can be alleviated by changing the size of the
interval from N to a divisor of N. This effectively reduces the lag in responding to measurement

information that the parameter values are different than previously estimated.

312 Maybeck estimator

Since it is assumed that Qr(a) is approximately constant over a window of N assimilation steps
and that Rr is known, Maybeck (1982) showed that after introducing some simplifications an

explicit form for Qr(a) can be derived from (18):
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. k ,
Or(ty)=— 3 {Kr(ti)did?KrT‘(ti) - [Mi_gPe ()M - Py )]} (20)
i=k—-N+1

At each time step k2N, the adaptive filter requires the storage of the last N innovation samples,

and the estimation of (20). The initial value Qr(0) must be specified. To guarantee the semi-

definite positiveness of Qr: we calculate its eigenvalues at each time step and reset the negative

eigenvalues to zero. This formulation has a very low cost and is easy to implement.

Maybeck (1982) pointed out the different factors which can influence the choice of the window
length. Even though large N yields less susceptibility to « bad » measurements and reduces the
high frequency oscillations of the estimator, we found that the convergence of the estimator was

really slowed when N was too large and we decided for a very small interval.

It has been shown (Blanchet et al., 1997), fhat it is necessary to drastically reduce the number of
parameters to be estimated, so that they are properly constrained by the assimilation. The
number of terms of the covariance matrix Qr, that are allowed to vary, is to be determined
according to the number of mdependent observatlons that are available, i.e. according to the
- rank of Hr (Blanchet, 1997). Actually, every term of the covariance matrix Qr can be estimated if
and only if p 2 r and Hris of full rank, i.e. of rank r (Mehra, 1970 ; see also Hoang et al. 1994).

313 Maximum likelihood estimator

The second approach solves directly.the minimization problem (18) by using whichever
minimization algorithm is the most efficient. We might like to use a conjugated gradient

algorithm in which case the minimization scheme is based on the gradient of the functional ]

which is given by :
T
9 . -1 _ Te-1(, 1) 9C0(L; axf(t) 1
§UJT=. z Trace (CO (ti)_col(ti)didi CO (ti)) aa(l) -2 a(il Hi CO (ti>di . (21)
i=k-N+1 ) }
with 9Co _ g, 9P T, IRe (22)

eventually Rr(o) :
l
0
%rj—(ti)=Mri_] aal()xr] ( i~ 1)M1‘ 1+7Q]£ (24)
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aPr? _ry_ oPrf _dKr f
aa’- —A[I KrHr] aaj A aaj H:Pr (25)

By deriving (1), and using the tangent linear operatofﬁ"(’;)ne writes :

ax( ) axa(ti_l) ’
ooy Mg (20)

afy, a a t. ~~4' .
BanE.tl) can be related to ia(al-——l) by deriving (12§'and making use of (7) and (26)
}

-

L'!ié’

a . .
ax ( =[1-sTknH, ]a (1) , 13K 4 =[1- sk H, iMiq (i) g13Kny  (27)
aa, 20 0 aaj aocj
We now note A the filter transition matrix ; o
Aig =[1-87Kq H; M (28)

s

f L ti r(t— T *
i —2(?%-(@} H{ C,l(ti)d; = i { i dT(T‘l)(QIizji({j"llJ S‘Pi(T)} (29)

i=k—N+1 O i=k—N+1 [1= tl T

Using (26) and (27), the last term in (21) can be written :

For each i, ¢ is the solution of the following adjoint equatlons

(P:(ti)z‘ZM;r_lHTtidi - (30)
(p:(r -1)= A (t-2) (p;(’t) , fortprayStsy o (31)
* * i it I\\
with AL =M [1-HTK 8] (32)

When the adjoint of the numerical model M” is not available, the gradient (21) is approxunated

by using the matrix Ar" and integrating the adjoint equations in the reduced space :

¢x (t;) =—2M=e!  Hel C5'(t)d; (33)
(pr;('c -1)= Ar'(1-2) (pr;(’t) , for tiT1 ST - (34)

. I Ty T
with A =Me[1- H'Ky ] - (35)

Thus, (29) is approximated by replacing (S\(pf('c)) with (pr.*(r). In such a case, we will have to

build the matrix Mr in the reduced space to be able to exp11c1t its adjoint MrT. Building Mr is an

expensive task.
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T is the number of backward integrations that are required to evaluate the gradient. The norm of
the transition matrix Ar being strictly smaller than 1 in order to ensure the filter stability, the

gradient can be obtained in good approximation with a relatively small value of T.

The forecast errors will remain bounded, if the system is detectable in the full space and if all the
unstable modes of the numerical model are included in the reduced space. But, the stability of
the adaptive Kalman Filter also relies on the convergence of the estimation of Qr, which means
that we have to choose carefully the parameters that we want to estimate. Actually, all the
elements of Qr can be uniquely determined if and only if p>r and Hr is of rank r (Mehra, 1970).

Using this algorithm, we could possibly estimate Rr as well, even though we would not be sure
that the simultaneous estimation of Rr and Qr is well behaved. Using this adaptive algorithm
makes it easy to take into account and estimate an auto-correlation of the observational or
system noise (Blanchet, 1997). This is simply done by augmenting the vector of unknown
parameters o and modifying the expression of Cg according to the Kalman Filter equations that

can be derived for auto-correlated noises (Daley, 1992-a).

.32 Practical aspects of implementation

The most expensive step of the ROEKF is the construction of the model transition matrix Mr in
the reduced space, thus this calculation should not be repeated too often (Fukumori and
Malanotte-Rizzoli, 1995 ; Cane et al., 1996). However, because of the limited validity of the
tangent linear approximation for the EKF, the transition matrix has to be updated periodically.
The memory requirement for the simplification matrix S can also be quite huge, unless the

projection onto the reduced space is defined as an operator instead of a matrix.

Adaptive KF can simultaneously estimate the state and the system error statistics, but these
algorithms require an even greater amount of computation and storage than the ROEKF. The
maximum likelihood estimator has not yet been used for huge systems and undoubtedly some
work has to be undertaken to lower its computational requirement, in order to make its cost
acceptable. For example, the computational cost of the gradient calculation used to solve the
minimization problem in section 3.1.3 is directly proportional to the number of unknown
parameters. So the cost of the maximum likelihood estimator could be reduced by using a

minimization algorithm that does not need an explicit formulation for the gradient.

Ll

Actually, a way of reducing drastically that cost would be to implement an optimal interpolation

scheme (Ol : Gandin, 1963) with the maximum likelihood estimator (18) for updating directly the
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forecast error covariance matrix Prf(mstead of Qr). Thus, we can avoid most of the expensive

calculation steps in the adaptwe assimilation scheme The counterpart is that one has to defme
properly the structure of the forecast errors, which strongly depends on the dynamics and the

system errors (14), since very few parameters can be estimated by the adaptive scheme. The
parameterization of Prf is one of the bigger task to be undertaken but it is actually shared by all

the assimilation schemes.

33 An application of the adaptive Kalman Filter for an ocean model

The application of adaptive filters to meteorology and oceanography has been very limited. The
adaptive KF discussed in section 3.1.2 and 3.1.3 have been applied in the context of tropical
oceanography (Blanchet et al., 1997). In this study, we assess the ability of the two adaptive
assimilation schemes at estimating an unbiased, stationary system noise. The adaptive
algorithms are implemented in a reduced space linear model for the tropical Pacific, as described
in Cane et al. (1996). Using a twin experiment approach, the“algorithms are compared by
assimilating sea level data at fixed locations mimicking the tropical Pacific tide gauges network.

It is shown that the description of the system error covariance matrix requires too many

parameters for the adaptive problem to be well-posed. However, the adaptive procedures are

efficient if the number of noise parameters is dramatically reduced and their performance is.
shown to be closed to optimal, i.e. based on the true system noise covariance. The two adaptive.
procedures that of Maybeck and the maximum likelihood estimator give comparable results in
terms of the analysis and forecast (figure 1, Table 1). They both are very efficient at whitening the

innovation sequence, meaning that all information has been extracted from the observations.

However, the structure of the matrices estimated in each case is quite different, meaning that the

matrix giving the optimal gain might not be unique when the number of observations is smaller

than the dimension of the state vector (Mehra, 1970). The ML estimator proved to be more costly

than the Maybeck one.

.These results show that it is worthwhile to concentrate on estimating system errors statistics to
improve the forecast. For non linear dynamics, Malanotte-Rizzoli et al. (1996) also found out in
that the most critical point was the specification of the system noise since they obtained much
better results, even with the steady state filter, by specifying full covariances instead of spatially
uncorrelated noise as was the case in their previous study (Fukumori and Malanotte-Rizzboli,
1995).
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In Blanchet (1997), the estimation of biased or auto-correlated statistics has also been addressed.
The estimation of auto-correlation parameters in the system or observational noise can only be
achieved with the maximum likelihood estimator.

observations true state (EOFs space)
correlation rms (cm) " correlation
forecast | analysis { forecast | analysis " forecast | analysis } forecast
unfiltered 0.68 6.21 0.66 7.48
Maybeck 0.77 0.95 4.96 211 l 0.77 0.80 5.81
TKF 0.79 0.94 4.72 2.37 0.81 0.86 5.05

Table 1 :performance of the Maybeck algorithm when estimating 16 parameters. Rms differences
and correlations are given for the observations at the 34 stations (left) and for the true
state of the ocean (right) for both the forecasts and the analysis. For reference, values are
given for the unfiltered run (no assimilation) and the KF run with true noise statistics.

4. CONCLUSION

The key issue of the assimilation is the specification of the observation error and forecast error
covariance matrices. There is no doubt that the EKF is of great interest to help us to find out how
the analysis errors are propagated. On the other hand, we showed that using the EKF for high
dimensional models implies some simplifications like order reduction and time-invariant

linearization of model dynamics.

The determination of the forecast error covariance matrix depends not only on the error
propagation but also on the specification of the system errors. Building the system error
covariance matrix re‘quires a good knowledge of the phyéics that has been neglected in the
model. In the reduced space, the system errors also depends on the dynamical coupling terms
between the retained and the discarded modes. Depending on the kind of simplification that is
used, this might be very hard to infer. The observation errors consist of the actual measurement
error and the representativity error of the observations errors in the reduced space. The latter
will also depends on the way we define the reduced space and may introduce auto-correlated

errors.

Actually, the necessary condition on a good knowledge of the noise statistics is never satisfied in
practice. The use of wrong a priori statistics will lead to erroneous estimates. Thus, it is

compulsory to get improved noise statistics compared to the very simple choices that are usually
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made. We doubt that « hand tuning » the representation of these errors is an appropriate tool for
a huge problem and the implementation of an adaptive scheme might prove very useful. One
can imagine a prediction system, where the analysis will be solved on a limited time window by
Ol or a variational approach, while the adaptive Kalman filter will evaluate the noise statistics.
As already mentioned the maximum likelihood estimator will also allow the estimation of the
statistics of auto-correlated noises.

An other promising approach which has not been discussed here, is the so called nonlinear
adaptive filter which estimate directly the gain matrix instead of the noise statistics in order to
improve the state forecasts (Hoang et al., 1996).
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Figure 1: Rms difference between true and predicted sea level using (a) the a priori system noise
covariance matrix (b) that estimated by Maybeck adaptive procedure (c) that
estimated by the ML function and (d) the true one. Contour interval : 2 cm.
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