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1. From deterministic to probabilistic forecasts

Until May 1998, end forecasts issued by Météo-France were strictly deterministic. Forecasters now
indicate a five level confidence index for every medium-range forecast, from Day+4 to Day+7 (i.e.
from +108h to +204h). This confidence index is based on a classification of ensemble forecasts
from the Ensemble Prediction System (EPS) of ECMWF. The method of classification is the tubing
(Atger 1999). Products of the classification are available through ECMWEF dissemination to
Member States. Forecasters evaluate the confidence index from an interpretation of these products
based on verification statistics and experience (Guyon 1998).

A confidence index can be seen as a very simple probabilistic statement. Confidence indices are
probabilistic statements of the first kind, as any statement that indicates in a way or another the
expected performance of a deterministic forecast. Statements that indicate explicitly the forecast
uncertainty, for instance the expected interval of a quantitative variable or the list of possible
instances of a qualitative variable, are probabilistic statements of the second kind. Probabilistic
statements of the third kind are probabilities, i.e. quantitative estimates of the likelihood of a
weather event.

As pointed out by Murphy (1993), the advantage of probabilistic statements, over deterministic
ones, is that they allow forecasters to express more accurately their judgements, i.e. their opinions
concerning the weather in the future. Human opinions are never completely deterministic, so that a
deterministic statement only gives a fruncated view of a forecaster judgement. End users might still
prefer the deterministic form. Deterministic forecasts being easily inferred from probabilistic
statements, weather forecasters should express themselves in a probabilistic form in order to be able
to satisfy any potential user (Murphy 1993).

Meétéo-France probabilistic forecasts for the end user have only been so far of the first kind
(medium-range forecast confidence index). Medium-range technical guidance, i.e. from the central
forecasting office to regional offices, often includes probabilistic statements of the second kind,
based on interpretation of EPS products. The aim is now to develop probabilistic statements of the
third kind, i.e. probabilities. Probabilities of significant weather events (based on the EPS) start to
appear in medium-range technical guidance. Selected professional users (e.g. energy providers) are
provided with tailor-made probabilities based on the EPS. The next step will be to provide all end
users with probabilities, including televisions and radios.

2. Performance of probabilistic forecasts

Forecast users, as well as weather forecasters, often consider the performance of probabilistic
forecasts as a subject of concern. A naive belief is that "probabilistic forecasts are never wrong",
which is partly true. Nevertheless, probabilistic forecasts might be more or less performant. Robust
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methods of verification of probabilistic statements have been developed for long, since the advent
of probabilistic weather forecasts in the early XXe century (Cooke 1906). The simplest approach is
given by the Brier Score (Brier 1950) that is the mean square error of forecast probabilities.
Missing picturewhere pj is the forecast probability of an event, oj=1 if the event occurs, 0;=0 if it

does not, n the number of forecasts.

The Brier Score is negatively oriented, as any mean square error. The minimum score (0) is only
obtained with never wrong deterministic forecasts. Murphy (1973) proposed a widely used
decomposition of the Brier Score, analogous to the classical decomposition of the RMSE (Root
Mean Square Error), that helps a lot to understand the different aspects of the performance of a
probabilistic forecast.

Missing picturewhere the n forecasts have been stratified in m categories grouping the ny forecasts
of probability py. The overbar indicates an algebraic mean.

The first term of the decomposition is generally known as reliability, or statistical consistency
(Talagrand et al. 1997). It expresses the ability to forecast reliable probabilities, i.e. probabilities
matching the observed frequencies. In other words, to get a perfect reliability, the event should
occur p times out of 100 forecasts of p% probability. An example of (almost) perfect reliability is
given by a climatological forecast (unless the season is very anomalous).

The second term of the decomposition is the resolution. For a given reliability, the resolution
expresses the ability of the forecast probability to vary from day to day. A climatological forecast
has no resolution, since the forecast probability is always equal to the climatological frequency. A
deterministic forecast has a perfect resolution if never wrong.

The maximum value of the resolution is given by the last term of the decomposition, often called
uncertainty, which does not depend on the forecasting system. Uncertainty expresses the intrinsic
difficulty to forecast the occurence of an event, i.e. the variance of observations. The uncertainty is
maximum (0.25) when the observed frequency is 50%.

3. Calibration of forecast probabilities

Reliability is similar to a bias. For instance, if the observed frequency is 60% when the forecast
probability is 80%, the lack of reliability might be expressed as a +20% conditional bias. As any
bias, reliability might be improved (i.e. reduced) by statistical correction. In the case of probabilities
this correction is known as calibration. When using ensemble prediction, a forecast probability is
generally computed as the proportion of ensemble members forecasting a weather event, assuming
ensemble members are equally likely to verify. Calibration takes into account the (past) observed
frequency of a weather event, given a proportion of ensermble members forecasting this event, to
compute the actual probability.

A simple, efficient method of calibration consists in forecasting the (past) observed frequency of an
event, given the (actual) proportion of ensemble members forecasting this event (Zhu 1996). The
question to answer in this case is: "What is the probability of a weather event, given the forecast?".
This probability calibration has to be applied separately for every weather event. In case of a
quantitative forecast with many significant thresholds (e.g. minimum temperature threshold
depending on the user concern), the calibration process has to be repeated a large number of times.
Also, some users require a complete probability density function (e.g. to feed specific models)
rather than the probability of a given event.
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An alternative method, for quantitative forecasts, consists in computing forecast probabilities (for
any threshold) from the complete (past) observed distribution of the variable, given an (actual)
ensemble distribution. This distribution calibration answers the question: "What is the expected
distribution of observations, given the forecast?". This second method, initially proposed by Hamill
and Colucci (1998) and described in some detail in the next section, is currently under experiment
at Météo-France to get reliable forecast probabilities from ECMWF ensemble forecasts.

4. Calibration from Talagrand diagrams

A Talagrand diagram, also called rank diagram, shows the distribution of observations given a
number of ensemble distributions. It is obtained by counting the number of times the verification is
found in each interval between the sorted N ensemble forecasts. Perfect reliability means that the
observed frequency in one interval is exactly 1/(N+1), this being true for any interval, whatever its
rank. In other words, reliable forecasts exhibit flat rank diagrams. In practice, generally U-shaped
rank diagrams reveal a lack of ensemble spread: the verification is (relatively) more often found in
the tails of the ensemble distribution than in its centre. Calibration based on rank diagrams consists
in a transformation of the (actual) ensemble distribution, the probability of each interval being
changed from 1/(N+1) to the (past) observed frequency in the corresponding interval.

The main difficulty of the method (as any calibration method) comes from the fact that rank
diagrams are built from ensemble distributions that are generally not homogenous. First, an
ensemble distribution is representative of a specific location in space and time (a place, a season, a
forecast range). Moreover, statistical moments (mean, variance, etc.) are different from an ensemble
distribution to another. Ideally, the rank diagram should be built from identical ensemble
distributions (i.e. having the same moments) valid at the same location, for the same time range, etc.
Practically, because of the limited sample that is available after a few years of operational ensemble
forecasting (e.g. from December 1996 for the current high resolution version of the ECMWF EPS),
ensemble distributions that differ significantly and/or are representative of different locations in
space and time are often used together to build a rank diagram (e.g. Strauss and Lanzinger 1995).

5. Calibration and systematic errors

Talagrand diagrams prove very sensitive to systematic errors of individual forecasts. Given a
deterministic forecast, model biases result in shifting the mean of the distribution of observations
from the forecast value. In the case of an ensemble, a bias results in a L-shaped or a dissymmetric
U-shaped rank diagram, the verification being more often "missed" on one side of the distribution
(Palany et al. 1999). Systematic errors are rarely purely systematic. They generally depend on the
location in space and time, as well as on the forecast value. Therefore systematic errors are likely to
compensate one another when building a rank diagram from heterogenous ensemble distributions.

Calibration of forecast probabilities based on such a rank diagram may very well lead to a good
overall reliability, when verifying an heterogenous distribution of forecast probabilities with the
corresponding heterogenous distribution of observations. On the other hand, verification of an
homogenous distribution of forecasts (e.g. local forecasts) is likely to reveal a poor reliability. In
this respect, calibration resembles any bias correction scheme: the main problem is to base the
correction on significant statistics, i.e. to build a sufficiently large homogenous sample. In the case
of calibration of forecast probabilities from an ensemble, a solution to get a more homogenous
sample is to build the rank diagram from an unbiased ensemble distribution, i.e. after applying a
statistical correction to ensemble forecasts.
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Two methods are used at Météo-France to reduce local forecast errors of weather parameters. These
methods are currently applied to 2m-temperature, 10m-wind and total cloud cover. First, model
output statistics (MOS) are applied at every location to individual ensemble forecasts. All forecasts
being integrations of the same model, the regression equations have the advantage of being identical
for a given location. Then, a first order Kalman filter is used to get rid of recurrent biases.
Calibration is only applied to the ensemble distribution once this two steps statistical correction is
completed for all ensemble members.

Preliminary results show that statistical correction leads to a definite improvement of the calibration
efficiency, calibrated probabilities being more reliable than those obtained through a simple
calibration process.
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