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Summary

By applying the observation operators of a variational data assimilation scheme to a set of random vec-
tors, drawn from a population whose p.d.f. is given by the background error covariance matrix, we ob-
tain grid-point fields of background error standard deviations for any observed quantity. These are
valuable for diagnosing the data assimilation system’s response to data and for tuning the specified ob-
servation and background errors in general. The calculated error standard deviations can be compared
with those obtained from study of innovation statistics (i.e. observed departures from the background).

The technique has been applied to a range of observed quantites including near-surface wind and tem-
perature, total column water vapour and satellite measured radiances. The latter include TOVS and
ATOVS channels of the HIRS, MSU, SSU, MSU-A and MSU-B instruments. We found that operation-
al background errors for humidity are set unrealisticly high in many dry subtropical areas. A case of
poor convergence in 4D-Var was found to be due to unrealsiticly high background errors in terms of
HIRS channel 12 radiances.

A temporal extension of the technique allows the background errors to be diagnosed at any future time
within the 4D-Var assimilation window. This is achieved by applying the tangent-linear of a low-res-
olution adiabatic version of the forecast model to each random vector. The error reduction due to the
use of data in the analysis is also estimated and propagated in time. We thereby obtain an estimate of
the analysis error propagated six hours in time, which can be used to define the background error in the
next data assimilation cycle. By cycling the scheme for a few days realistic flow-dependent background
errors were produced.

1. INTRODUCTION

Modern data assimilation schemes combine the information from a wide variety of observations with
prior information in the form of a background atmospheric state (Daley 1991). The background is in
operational practice often a short-range (six-hour) forecast from the previous analysis. The resulting
analysis is optimal only if accurate error estimates have been assigned to the observational data and to
the background (Lorenc 1986). The relative weight given to the observations and the background (and
therefore the amplitude of the analysis increments) is fundamentally determined by the specified ob-
servation and background error estimates.

When tuning a data assimilation system, one of the most important aspects is to improve the realism of
the specified error statistics. The study of ‘innovations’ (i.e. observed minus background departures) is
the most frequently adopted technique (Hollingsworth and Lonnberg 1986; Lonnberg and Hollings-
worth 1986; Jirvinen 1998 in this volume). It provides estimates, not of observation and background
error separately, but of the sum of the two components. The obtained statistics are in terms of the ob-
served quantity. ‘

In earlier schemes, before variational methods were introduced, the observed and the background in-
formation were often presented to the analysis in terms of the same physical quantities as the analysis
variables, e.g. temperature, wind, humidty and surface pressure, or a linear combination of these. The
corresponding error estimates could then easily be compared with those obtained from the innovation
statistics. Variational schemes, however, provide much greater flexibility in terms of observation usage
(Courtier et al. 1998; Rabier et al. 1998; Andersson et al. 1998). Any observed quantity for which a
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meaningful model equivalent can be computed can in principle be used directly in the analysis without
first being converted (or ‘retrieved’) into analysed quantities (Lorenc 1986). Satellite-measured radi-
ances (Andersson et al. 1994) and near-surface observations of wind and temperature (Cardinali et al.
1994) are examples of this. For such data it has for this reasons been difficult to carry out tuning based
on innovation statistics.

In this paper we present a technique by which the specified background error covariance matrix can
be transformed to observation space. The method gives global grid-point values of background error.
standard deviations in terms of observed quantities. The calculation takes into account the balance
constraints built in to the variational background term (Derber and Bouttier 1999) and is therefore
consistent with the actual background error covariance matrix. We have computed the background er-
ror equivalents for the TOVS-channels of the HIRS, MSU and SSU instruments and for the ATOVS-
channels of the AMSU-A and AMSU-B instruments. We have also applied the technique to two-metre
temperature, ten-metre wind, total column water vapour, geopotential et-cetera.

The ATOVS-channels are not currently used operationally at ECMWF. It is hoped that the current
work will help diagnosing the data assimilation response to new data types such as ATOVS and facil-
itate the development of effective quality control of the new data. As the ECMWF forecast model do-
main is about to be extended higher into the stratosphere (Untch et al. 1998) the innovation technique
will be applied to some of the highest-peaking TOVS/ATOVS channels in an effort to tune the back-
ground errors of the extended model in the mid/upper stratosphere. The availability of background er-
rors for observed quantities has also helped diagnosing 4D-Var convergence problems in one
occasion.

The method to transform background errors to observation space is described in Chapter 2 and the
propagation in time is outlined in Chapter 3. A selection of results is presented in Chapter 5 followed
by conlusions in Chapter 6.

2. ANALYSIS AND BACKGROUND ERROR ESTIMATION

The current operational method for analysis and background error estimation was proposed by Fisher
and Courtier (1995) with further details described by Fisher (1996). In this section we reproduce the
outline of the algorithm.

21 Analysis error

The minimisation is performed with respect to a control varable y which is related to the model var-
iables x via a change of variable

x = L7 (x-x;) M

where L is the change of variable operator such that LL" = B. The vector X, is the background and
B is the background error covariance matrix. With these definitions the background term is simply
J, = 0. 5x % (Courtier et'al. 1998; Derber and Bouttier 1999).

- As suggested by Fisher and Courtier (1995) the analysis error A is estimated using the combined
Lanczos/conjugate gradient algorithm which finds approximately the leading eigenvectors v, of the
4D-Var Hessian and the associated eigenvalues A, . The leading eigenvectors describe the directions
in control-vector space in which the information from observations is most important. By applying the
change of variable operator to each eigenvector, an estimate of the analysis error variances (the diag-
onal of A) in model space is obtained:
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M
diag(A)=diag(B)+ ¥, (b — 1)(Lv,)(Lvy)" @
k=1

where M is the number of computed eigenvectors.

22 Background error estimation

The ad-hoc method. The diagonal of B is in current 3D/4D-Var obtained by applying a simple error-
growth model to the B of the previous cycle. Vorticity standard deviations at each level are then
renormalized to the global amplitude given by the NMC statistics. Temperature, wind, surface pres-
sure and geopotential errors, for later use in the background quality control checks, are obtained by
ad hoc formulas based on the vorticity standard deviations.

The randomisation method. Alternatively, the randomisation method can be used to calculate a low-
rank estimate of B, in terms of model variables (Fisher and Courtier 1995). In particular the diagonal
of B can be estimated as ‘

N
diag(B) = ¥ (LE)(LE)" ©
i=1
where &; is a set of N random vectors in control-vector space, drawn from a population with zero
mean and unit Gaussian variance. The difference between randomisation and the operational ad hoc
method is very small for vorticity as the L -operator for vorticity is the identity (see Derber and Bout-
tier 1999). There is however a significant difference for the mass variables (surface pressure and tem-
perature), which are partly related to vorticity through a balance operator and partly un-balanced.
Randomisation takes the actual </, balance into account, and is therefore more accurate. Variances
produced by randomisation are noisier if NV is small.

23 Transformation to observation space.

The randomiztion method can be extended to compute an approximation to HBH' —the background
error in terms of observed quantities. Let H be the Tangent Linear observation operators, linearized
around the background state, then

N
diag(HBH') = ¥ (HLE,)(HLE,)" (4)

i=1

This requires that H can be applied to vertical profiles of model variables at model grid points. The
observation operators of 3D/4D-Var (Courtier et al 1998) include vertical interpolation between mod-
el levels, radiative transfer and hydrostatic integrations and interpolation in the surface layer. By the
application of Eq. (4) maps of background error variances may be obtained in terms of each of the
TOVS and ATOVS radiance channels; geopotential height, temperature, wind and humidity; total
ozone and total column water; two-metre temperature, two-metre humidity, ten-metre wind and sur-
face pressure. By using the actual H and L of the variational analysis, the only approximation in Eq.
(4) is in the restricted sample size, N < ==, which inevitably leads to some noise in the estimated var-
iances.

The observation operators can also be applied to the Lv,-vectors and summed up as in Eg. (2), to
form analysis errors in terms of observed quantities.

M .
diag(HAH') = diag(HBH') + ¥ (A — 1)(HLvV,)(HLv,)" 5)
k=1
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The first term on the right hand side is obtained from Eq. (4). Using a very simple error-growth model,
these analysis errors can be propagated in time by six hours and then be used to define quality control
rejection limits in the background check of the next cycle.

3. PROPAGATION IN TIME

The very simple error growth model of Savijérvi (1995) used so far in 3D-4D/Var represents expo-
nential error growth of small errors and the assymptotic behaviour of large errors towards a climato-
logical variance (Fisher 1996). It 1acks the dynamical i.e. flow-dependent effects on error growth.

3.1 Prediction error

From Kalman Filter theory we have an expression for the evolution of the prediction error covariance
matrix, P: '

P = MAM' +Q (6)

where M is the tangent linear of the forecast model and Q is the model error covariance. Inserting
the approximate form for A from Eq. (2) into Eq. (6), we have:

M
diag(MAM") =diag(MBM") + ¥ (A, ~1)(MLV,)(MLv;)" )
k=1 . ‘ v .

N
diag(MBM') ~ ¥, (MLE)(MLE,)" , S ®

=1

Eq. (7) and Eq. (8) provide expressions for the evolution of analysis and background errors to any fu-
ture time within the range of validity of the tangent linear approximation. In the current operational
context there are around 90 v, -vectors. By setting N = 50 the additional cost would be 90+50=140
six-hour integrations of the adiabatic tangent linear model M, at low resolution (e.g. T42). It is hoped
that this method could replace the current simple error-growth model and introduce the previously
lacking flow-dependent effects on error growth.

Flow-dependent BgQC. If, in addition to the above, we apply the observation operators to the
evolved random vectors we get a good approximation of the background error in observation space
valid at a later time:

N
diag(HMBM'H") = Z (HMLE,)(HMLE,)"

i=1
at a small extra cost.

We may also apply H to the evolved eigenvectors MLv, and sum up as in Eq. (7) to get the analysis
errors for observed quantities at the future time:

M
diag(HMAM H') = diag(HMBM'H") + ¥ (A, — 1)(HMLv,)(HMLv,)" ©)
k=1

These can be used to provide flow-dependent quality control limits for the background quality control
checks of the next analysis cycle.

4.
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5. RESULTS

The results presented in this section have been obtained by cycling 4D-Var for five days at resolution
T319 outer loop (i.e. resolution of background fields), T63 inner loop (i.e. resolution of analysis in--
crements) and L50 (the number of model levels), with the top level at 0.1 hPa (Untch et al 1998). The
assimilation started 19981201-00 UTC and the results presented refer to 19981206-00. Background
errors have been propagated using Eq. (7) and Eq. (8) and transformed to observation space using Eq.

. '

The background 500 hPa height field is shown contoured in Fig. 1 with the associated background
error shaded. Larger background errors are shown darker. We can see that the troughs over the oceans
generally are associated with higher background errors - with the largest errors in the frontal regions
to the south of the cyclone centres. Data dense continental areas (Europe, America and China) gener-
ally show smaller background errors, except along the American West coast were in this case larger
errors have drifted in with a trough from the Pacific.

Figure 1: Background field of 500 hPa geopotential (contoured) and estimated flow-dependent
background error standard deviation (shaded), 19981206-00 UTC. Shading starts at 12 m with an
interval of 4 m.

The remaining figures show examples of background errors in terms of TOVS radiance channels. The
observation operators (radiative transfer calculations in the case of TOVS) have been linearized
around the background state. The estimated background errors are therefore a reflection of the model
state itself as well as the specified background error covariance matrix. This may be important partic-
ularly for some humidity sensing channels for which the weighting function varies strongly with the
amount and the distribution of humidity in the atmosphere. Fig. 2 shows MSU-2 background errors
(shaded) in the Southern Hemisphere together with the background 500 hPa height field (contoured).
We can see that the background errors used in this experimental version of 4D-Var translate to MSU-
2 errors of less than 0.4 degrees (brightness temperature) in most oceanic areas. Errors in excess of
0.4 degrees (shaded) occur mostly in the dynamically most active troughs. Errors are also large over
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sea ice and over land were this channel is sensitive to errors in surface skin temperature

Figure 2: Background field of 500 hPa gebpotenﬁal (contoured) and estimated flow-dependent
background error standard deviation (shaded) for TOVS channel MSU-2, 19981206-00 UTC. Shading
starts at 0.4 degrees (brightness temperature) with an interval of 0.1 degrees.

The specification of background errors.is currently the most uncertain in the upper-most part of the
model where there are few conventional data to verify short-range forecasts against. The NMC-meth-
od is also less reliable in data sparse parts of the atmosphere. Comparison with innovation statistics
for some high peaking AMSU channels may provide some guidance in the near future. The transfor-
mation of the current B -matrix into equivalents of AMSU-12, which peaks around 10 hPa, yields
standard deviations between 0.4 and 0.6 degrees in most parts of the mid-latitudes, Fig. 3. The spec-
ified background error for temperature, however, is between 0.8 and 2.0 degrees in these parts of the
stratosphere (not shown). The much lower errors in terms of vertically broad TOVS channels are a
consequence of important negative correlations of error.

The final example shows HIRS channel 12. This channel is sensitive to humidity in the mid and upper
troposphere. Where there is a lot of humidity in the atmosphere the channel tends to peak higher up
and where the atmosphere is dry it peaks lower down. The signal in HIRS-12 may also be saturated if
the humidity is very high in the mid troposphere. These factors combine to create a very complicated
field of background error for HIRS-12. An example is shown in Fig. 4. It shows the background total
column water vapour (contoured) and HIRS-12 background errors (shaded). Light shading indicates
low errors (less than 2 degrees) and darker shading indicates higher errors (more than 4 degrees). We
can see that the lowest errors tend to occur where the humidity is high, and vice versa. It was found
that in extreme cases of dry background even small additions of humidity will result in a large re-
sponse in terms of HIRS-12 brightness temperature. This characteristic of HIRS-12 in combination
with crudly specified background errors for specific humidity in dry regions can in some cases result
in very large estimated background errors for HIRS-12 - in one case exceeding 30 degrees (not
shown). With observations errors in the order of 2 degrees poor conditioning of the 4D-Var minimi-
sation was observed. Statistics of HIRS-12 innovations indicate that such very large backkground er-
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Figure 3: Background field of 10 hPa geopotential (contoured) and estimated flow-dependent
background error standard deviation (shaded) for TOVS channel AMSU-12, 19981206-00 UTC.
Shading starts at 0.4 degrees (brightness temperature) with an interval of 0.2 degrees.
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Figure 4: Background field of total column water vapour (contoured) and estimated flow-dependent
background error standard deviation (shaded) for TOVS channel HIRS-12, 19981206-00 UTC, South
East of Madagascar. Light shading below 2.0 degrees (brightness temperature) and darker shading
above 4.0 degrees.

rors are spurious and should be corrected by improved specification of humidity background errors.
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6. CONCLUSIONS

A method to dignose background and errors for observed guantities has been developed. The obser-
vation operators (linearized around the background model state) are applied to a set of random vectors
drawn from a population with the p.d.f. of the background error covariance matrix. The method can
be used to tune the setting of observation and/or background errors, by comparison with innovation
statistics (observation minus background). This may be especially useful as: 1) The model domain is
about to be extended higher into the stratosphere; 2) New observations are introduced (AMSU-A and
B) and 3) New analysis variables are introduced, e.g. ozone. Result of such studies are not available
at the current time,

The technique has been used to diagnose a real case of 4D-Var convergence problem, with respect to
humidity sensitive radiance observations.

Randomisation also provides a practicai and cheap way of getting flow-dependent background error
standard deviations, for cycling of 4D-Var and for improvement of quality control rejection criteria.
Forecast and quality control impact is yet to be evaluated.
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