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Summary: In the past decade ensemble forecasting has developed into an integral
part of numerical weather prediction. It offers flow dependent forecast probability
distributions, as compared to single value (or "control”) forecasts, which are of more limited
use. A unique aspect of an ensemble of forecasts that cannot be reproduced by a single
control integration is its ability to distinguish between forecast cases with high and low
uncertainty. This aspect of the NCEP ensembile is studied quantitatively by verifying the
ensemble mode forecasts along with a traditional higher resolution control forecast, in
terms of predicting 10 climatologically equally likely 500 hPa height intervals. A
stratification of the forecast cases by the degree of overall agreement among the
ensemble members reveals great differences in forecast performance between the cases
identified by the ensemble as the least and most uncertain. This confirms that the
ensemble forecast system is capable of identifying in advance the expected success rate
of the forecasts, which is further demonstrated by two forecast examples, where
ensembles from the ECMWF and NCEP systems are also compared.

1. INTRODUCTION

During the past decade ensemble forecasting has become an integral part of Numerical Weather
Prediction (NWP). Major meteorological centers now regularly produce and use ensemble
forecasts (Molteni et al., 1996; Toth and Kalnay, 1993; Rennick, 1995; Houtekamer et al., 1996;
Kobayashi et al., 1996). The provision of flow dependent forecast probability distributions of
weather elements, that reveal the case dependent forecast uncertainty, has been considered as
one of the main advantages of ensemble forecasting (Ehrendorfer, 1997).

The generation and verification of probabilistic forecasts based on ensembles was the subject of a
number of recent studies (e. g., Anderson, 1996; Hamill and Colucci, 1997; Talagrand et al., 1998;
Atger, 1999; Richardson, 2000). General statistics for the performance of the NCEP ensemble
forecasting system were provided by Zhu et al. (1996, with a comparison to that of the ECMWE
Ensemble Prediction System), and Toth et al. (1998, with a comparison to that of a single higher
resolution control forecast). These earlier studies demonstrated that the ensemble forecasts can be
used to generate skillful probabilistic forecasts, which, after a simple statistical postprocessing
based on verification statistics from the recent past, become very reliable.

In recent studies (Mylne, 1999; Richardson, 2000; and Toth et al., 2000) it was also demonstrated
that the potential economic value associated with the use of an ensemble forecasting system is
considerably above that attainable by using a single, even higher resolution control forecast, given
substantial uncertainty in the forecasts (i. e., 500 hPa forecasts at and beyond 3 days). It was also
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shown (Toth et al., 1998) that the extra value associated with an ensemble of forecasts as compared
to a single control forecast is due to two main factors: (1) the ensemble can provide a probability
distribution that is more complete than a dichotomous probability description given by a single
forecast; and (2) the ensemble can characterize foreseeable, flow dependent variations in the
uncertainty of the forecasts. While the first factor (provision of a full probability distribution) could
possibly be viewed as a formal and trivial one, the second factor (case dependent uncertainty
estimates) is considered as providing genuine information that can be derived in practice only from
an ensemble (Ehrendorfer, 1997). As it furns out, even full probabilistic forecast distributions based
on a single forecast cannot reach the skill level of that provided by an ensemble of forecasts
(Talagrand, 1999, personal communication), attesting to the value of case dependent uncertamty
information prowded by the ensemble.

In this paper we investigate the practical question of how sharply an ensemble of forecasts, based
on their flow dependent level of similarity or dissimilarity, can distinguish between forecast
situations with higher or lower than average expected uncertainty. Ensemble forecasts over a
period of a season (section 2) will be evaluated by stratifying the cases according to the degree of
ensemble forecast similarity (section 3). The main results will be presented in section 4, while
section 5 provides two examples. The conclusion and discussion are given in sections 6 and 7
respectively.

2. ENSEMBLE FORECAST DATA

In the present study, the NCEP operational global ensemble forecasts (Toth and Kalnay, 1997) will
be evaluated over the period March — May 1997, with the aim of assessing how sharply the
ensemble forecasts can distinguish in advance between cases of higher or lower than average
uncertainty. The studied period is from a transition season and conicides with that of Toth et al.
(1998). Since winter is characterized by higher, and summer by lower than average predictability,
the results from the spring season studied here may well characterize average year—round
ensemble performance.

The NCEP global ensemble forecasts in 1997 consisted each day of 17 individual forecasts run out
to 16 days lead time, of which 3 were control forecasts started from unperturbed analyses, and 14
were perturbed forecasts started from initial conditions where bred perturbations of the size of ‘
estimated analysis uncertainty were both added to, and subtracted from the control analyses at 1
0000 and 1200 UTC (Toth and Kalnay, 1997). In the present study, the 14 T62 resolution perturbed"
forecasts (10 from 0000 UTC, and 4 from 1200 UTC) are evaluated, along with the 0000 UTC MRF
T126 high resolution control forecast that provides a reference level of skKill.

500 hPa height forecast and analysis data will be used over the Northern Hemisphere (NH)
extratropics (20N — 77.5N), on a 2.5 by 2.5 latitude-longitude grid. As in Zhu et al. (1996), and Toth
et al. (1998), the forecast and verifying analysis data will be projected at each grid point into 10
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climatologically equally probable intervals (Fig. 1). These intervals were defined on a monthly basis
using the NCEP reanalysis data (Kalnay et al., 1996), and were subsequently linearly interpolated
for each date within the studied period.
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Fig. 1. Ten climatologically equally likely intervals, marked by the heavy vertical lines, for a grid-
point at 95W, 40N, for 500 hPa height for April, based on the NCEP/NCAR reanalysis data. In real-
ity the intervals on the two sides are open ended; on the figure they end at the 1% frequency level.
Beyond the level of climatological frequency (10% on vertical scale, dotted horizontal line), two
ensemble distributions as examples for low (lightly hatched in red) and high (heavily hatched in
blue) uncertainty cases are also indicated.

3. METHODOLOGY

3.1 Stratification by expected uncertainty

On each day and at each grid point in the period and region studied, the distribution of the 14
ensemble forecasts at each lead time is evaluated in terms of the 10 climatologically equally iikely
bins. In particular, the number of ensemble forecast members associated with the most populous
climate bin (ensemble mode) is noted. High ensemble mode values (14, or close to 14) correspond
to a compact ensemble, where most members indicate very similar height values, whereas low
ensemble mode values (2, or close to 2) indicate a diverse ensemble where there is little agreement
among the members. The former cases represent forecast situations with a small ensemble spread,
with relatively small forecast uncertainty, while the latter cases are characterized by large ensemble
spread, indicating /arge forecast uncertainty (see continuous red, and dashed blue lines
respectively in Fig. 1). '

Next, 10-15% of the total number of cases (over all gridpoints and days) associated with the
highest, and separately with the lowest ensemble mode values are identified. At short lead times
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when the ensemble spread is generally small, 10-15% of the cases with the highest ensemble
mode will be made up by the cases with ensemble mode equal to 14, while at later lead times more
lower ensemble mode values have to be included to capture 10-15% of all cases. As for the cases
~ with the lowest ensemble mode, at long lead time, due to the generally large spread, ensemble
mode values of 2 or slightly higher will account for 10-15% of all cases. At shorter lead time with
smaller ensemble spread, however, more higher mode values need to be included to account for the
same, 10-15% of all cases. ‘

3.2 Measure of performance

The 10-15% of cases with the highest and lowest ensemble mode values will be referred to as the
"small uncertainty” (or high predictability), and "large uncertainty” (or low predictability) cases
respectively. This information is available to the forecasters when the ensemble forecast is
released. The main results of this study shown in the next section pertain to the performance of
ensemble mode forecasts, evaluated separately for the high and the low predictability cases. In
addition, the average performance of the control MRF forecasts, which cannot be objectively
classified into high or low predictability cases without information from the ensemble, will also be
evaluated. The performance measure used for evaluating both the ensemble mode and MRF
control forecasts is the average hit (or success) rate of the particular forecast system:

i3 ()

HR = - f

where h; is the number of cases (hits) when a forecast system, calling for the occurence of a
particular climate bin, correctly verified, and t; is the total number of all such forecasts, accumulated
over all climate bins. In section 4 average hit rate results for the MRF control forecast, as well as for
ensemble mode forecasts evaluated separately over the high and low predictability cases, will be
shown.

3.3 Attributes of probabilistic forecasts

The two main atiributes of probabilistic forecasts are their reliability and resolution (see, e. g.,
Stanski et al., 1989). Reliability implies that forecast probability values match the conditional
observed frequencies of the same events over the long run, e. g., forecasts issued with a 40%
probability verify 40% of the time. Reliability, however, does not necessarily imply value. For
example, if the climate probability of the predicted event is also 40%, the forecast would not have
value with respect to using climatological information only. Resolution is a measure of how "sharp”
the probabilistic_ forecasts are, i. 'e.,‘ how close the forecast probability values are to the ideal 0 and 1
values. Perfect resolution (i. e., the exclusive use of 0 and 1 probability values, as with the use of a
single control forecast) does not guarantee optimal forecasts either, unless accompanied by perfect
reliability, too. An ideal probabilistic forecast system in fact has as much resolution as possible,
while exhibiting perfect reliability at the same time. '
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We know from earlier verification studies (e. g., Zhu et al., 1996; Toth et al., 1998) that probabilistic
forecasts based on an ensemble (or a control forecast) can be easily calibrated, i. e., probability
values based on the relative frequency of ensemble members indicating a particular weather event
(here, one of the 10 climatologically equally likely bins) can be adjusted to match observed
frequencies over the long run. This is because the system generally behaves consistently in time
and the forecast probability values can just be relabeled to match the observed frequencies’. In this
study we assume that the ensemble based probabilistic forecasts can be perfectly calibrated, and
explore how much resolution the forecasts have.

4, RESULTS

Fig. 2 evaluates how different the hit rates of the forecasts are for the 10-15% of all cases with the
lowest and the highest predictability, as identified in real time by the ensemble, as a function of lead
time. The hit rates for all cases, using the unstratified MRF forecasts, are also shown. Note that the
ensemble mode forecasts evaluated for all cases without stratification (not shown) exhibit hit rates
similar to that of the high resolution control, except with somewhat lower values before, and
somewhat higher values after day 6 lead time.

The results indicate that the ensemble forecasting system that was operational in the spring of 1997
had a substantial resolution. For example, at 1 day lead time the 10-15% of most predictable
forecasts verified with a hit rate of 92%, while the least predictable 10-15% verified with a hit rate of
only 36%. The average hit rate for the unstratified MRF forecasts was 65%. The verification
statistics at later lead times reveal a somewhat reduced, but still wide range of hit rates. While the
overall hit rates at 4 (12) day lead time are 34% (15%), the most and least predictable 10~15% of the
cases exhibit hit rates of 71% and 17% (35% and 11%).

Note that the overall average hit rates (MRF control, dotted green line in Fig. 2) are closer to
the stratified small uncertainty hit rates at very short lead time (cf. continuous red line at
12~hour), and to the large uncertainty hit rates at longer lead times (cf. dashed blue line at
and beyond 10-day lead time). The skewness of the hit rate distribution is especially
prominent at 10—day and longer lead times, suggesting that most of these forecasts are of
poor quality, with a fewer number of exceptionally good forecasts.

Beyond revealing the large differences in verification statistics between the most and least
uncertain cases at any lead time, the results also allow a comparison of verification statistics at
different lead times (see the 0.3-0.4 range of hit rate values highlighted in brown in Fig. 2). For
example, we can see that the least predictable 10~15% of the 1—day forecasts have a hit rate (36%)

1. Calibration to arrive at reliable probabilistic forecasts is necessary because neither the model,
nor the generation of the ensemble is perfect. For example, in most cases ensemble forecasts
have insufficient spread.
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Fig. 2. Average hit rate of 500 hPa height ensemble mode forecasts for March—May 1997, verified
in terms of 10 climatologically equally likely bins at each grid point over the Northern Hemisphere
extratropics. The results are stratified into low (continuous red line) and high uncertainty (dashed
blue line) groups, according to the number of ensemble members falling into the most populated
bin. Each line represents average results for 10—15% of all cases with the lowest or highest fore-
cast uncertainty respectively. Hit rates for the unstratified high resolution MRF conirol forecast
are also shown (dotted green line).

that is practically the same as the average hit rate of 4—day forecasts (34%), or the hit rate of the
most predictable 10-15% of the 12—day forecasts (35%).

5. SYNOPTIC EXAMPLES

In this section we present two synoptic examples to demonstrate the dramatic variations in the
performance of NWP forecasts that can be objectively identified and foreseen with the use of an
ensemble forecast system.

5.1 Low uncertainty at long lead time

First we consider a deep low pressure system that developed in the Gulf of Alaska, affecting the US
and Canadian west coast around 1200 UTC February 6, 1999. The analyzed mean sea level central
pressure of the system had a closed contour of 968 hPa, indicating a strongly anomalous flow with a
40 hPa negative anomaly from the long term mean. This cyclone was apparently associated with a
very high degree of predictability. It was at 11.5 day lead time when the feature of the anomalous low
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was first noted in real time using the NCEP ensemble forecasts. And the ensemble mean of the
mean sea level pressure forecast did not change much after the initial time of 0000 UTC January 27
(10.5 days lead time), with the deepest closed isobar of the low predicted between 972 and 964 hPa
at 9.5 days and shorter lead times.

As an example, in Fig. 3 we present the 9 day NCEP ensemble mean forecast (white contours),
along with its associated spread (shades of color). Over large areas of the storm and its
environment, including the extreme central low pressure area, the associated ensemble spread
(standard deviation of ensemble members around the mean) remained around or below 6 hPa. This
is half or less than half of the average ensembie spread computed for the preceding month at this
lead time, indicating well below average forecast uncertainty. The low level of forecast uncertainty is
confirmed by the fact that consecutive ensemble mean and spread forecasts valid at the same time
(not shown) were very similar. The greatly below average uncertainty for the studied case was
further confirmed by a comparison of the NCEP and ECMWF (Molteni et al., 1996) ensemble mean
forecasts, which were very similar again over a large area of the cyclone (cf. white and red contours
in Fig. 3). A comparison of the 9 day ensemble mean forecast (Fig. 3) with the verifying analysis (Fig.
4) reveals that the forecasts for this cyclone, as expected from the real time uncertainty estimates,
verified very well — the error in the central pressure forecasts was only a few hPa.

Comparing the large scale flow configuraﬁons at 12-hour (Fig. 6) and 9—day (Fig. 3) lead time it is
clear that the forecasts were not trivially persisting the observed features present around initial time.
Great changes from extremely high to extremely low anomalous pressure conditions were
predicted well over large areas, with changes from initial to final conditions reaching up to 40 hPa
over Alaska and nearby areas. Note that the extremely low height values analyzed in Fig. 4 were
well predicted by the ensemble mean forecasts (Fig. 3), documenting that the ensemble mean can
retain highly anomalous flow patterns as long as these features are highly predictable.

It is interesting to note that analyzed 500 hPa height values near the center of the storm were around
4777 m with a negative anomaly of more than 500 m, falling into the lowest 1% of historical cases
based on the NCEP/NCAR reahalysis. At 9—day lead time, 80% (40%) of all ensemble members fell
into the lowest 2% (1%) of the climatological distribution, giving a strong indication for the possible
occurence of extreme low values.

The low ensemble spread in Fig. 3 indicates that all members were rather similar. Therefore it is not
surprising that the MRF control forecast also verified well. A user with access to only a single control
forecast, however, could not have made much use of a control forecast on its own. Given the low
levels of average skill at the 9-11 day lead time (less than 20% hit rate, see dotted green curve in
Fig. 2), forecasts would be issued with a very low level of confidence, that would render them
useless for a wide range of users (see, e. g., Fig. 4 of Toth et al., 2000). Yet with access to information
on the widely varying levels of uncertainty, indicated reliably by the ensemble, there are times when

187



Fig. 3. Operational 9-day NCEP ensemble mean mean sea level pressure forecast (white con-
tours) valid at 1200 UTC February 6 1999. The associated spread is indicated as shades of color.
The corresponding operational ECMWF ensemble mean forecast is shown as red contours.
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Fig. 4. NCEP analysis of the mean sea level pressure field at 1200 UTC February 6 1999.

188



TOTH ET AL.: ESTIMATING FORECAST UNCERTAINTY USING ENSEMBLES

weather forecasts with much increased confidence can be made (cf. continuous red curve in Figs. 1
and 2).

The above case provides such an example, where confident extended range daily weather
forecasts could have been issued based on the ensemble guidance. For example, 12 or more of the
17-member NCEP ensemble forecsts (70-100%) indicated a half inch or more 24—hour
accumulated precipitation at 10—day and shorter lead times (Fig. 5) over all areas on the northwest
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Fig. 5. Probabilistic quanti-
fative accumulated preci-
pitation forecasts for a
24—-hour preriod ending at
1200 UTC February 6 1999,
based on the NCEP global
ensemble forecasts. Fore-
casts are shown with differ-
ent lead times (marked as
1=, 2, ..., 10-day, initialized
at 0000 UTC on February 5,
4, ..., January 27.)
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coast that actually recieved that much precipitation. Similarly, at 7—day or shorter lead times, the
ensemble predicted 70% or higher probabilities for most areas affected by more than an inch of
precipitation. We note that the time development of the weather associated with the storm, as
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suggested by the unusually low ensemble spread over large areas surrounding the storm, was also
well predicted. For example, in contrast to the 70% and higher forecast probability of an inch or more
precipitation corresponding to the observed precipitation event around 0000 UTC February 6, the
ensemble gave zero probability at all lead times for more than an inch of precipitation for the
preceding 24—hour period, centered around 0000 UTC February 5.

5.2 High uncertainty at short lead time

The previous example illustrated the potential value of the ensemble approach in identifying
weather features associated with low forecast uncertainty, even at long lead times. In this
subsection an example is shown for identifying cases with unusually high forecast uncertainty.
Identifying these cases can be especially valuable at shorter lead times where the overall level of
forecast skill is relatively high. Interestingly, a prominent example of this kind offers itself in the same
forecast studied in Fig. 3, but valid at a very short lead time.

Shown i in Flg 6 is the 12—hour lead time NCEP hig

h resolution control forecast (called "AVN”, white

[ 1 poia] o [
o 1 3 4 6 7 8 9 10 11 12 13 14 15 18
Fig. 6. Same as Fig. 3 except for 12—hour control forecasts valid at 0000 UTC January 29 1999.

contours), valid at 0000 UTC January 29 1999. A closed low, associated with a cold front extending
to the southwest, is seen over the eastern Pacific approaching the west coast of the US. The
ensemble spread associated with this system is around 6 hPa. This is the same level of uncertainty
found over large areas of the storm in the 9—day forecast example of Fig. 3. But while the 6 hPa
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spread is half or less of the usual spread at 9 days lead time, it is up to 3 times more than that at the
12-hour lead time in Fig. 6.

A comparison of the 12-hour NCEP control forecast to that from ECMWF (cf. white and red
contours in Fig. 6) confirms the unusually large degree of uncertainty regarding the position of the
closed low. The largest differences between the two fields, which reach up to 5 hPa, occur in the
area of large ensemble spread. The 5 hPa difference observed between the two control forecasts
over the eastern Pacific low pressure system at 12—hour lead time (Fig. 6) is actually above the level
of difference present between the two ensemble mean forecasts 8.5 days later, near the center of
the Gulf of Alaska storm where the differences are 4 hPa or less (Fig. 3).

Given the high level of average success rate of 12-hour forecasts (65%, see dotted green curve on
Fig. 2), a weather forecast based on a single control integration in this case may provide misleading
guidance in terms of overconfidence. Information again from the ensembile, in this case about larger
than normal spread, can provide case dependent uncertainty estimates (see the dashed blue curve
in Fig. 2) which can be crucial in many applications.

The large 12-hour lead time forecast differences present within the NCEP ensembie, and between
the ECMWF and NCEP control forecasts off the northwest US coast in Fig. 6 (around 6 hPa) would
certainly be associated with different weather conditions, with the ECMWF forecast, for example,
suggesting stronger onshore winds, associated with heavier precipitation. Note that the same
northeast Pacific area in the 9-day forecast (Fig. 3) is associated with the same or lesser degree of
uncertainty (5-6 hPa ensemble spread and forecast differences). It is interesting to note that based
on the results of Fig. 2, 10-15% of the time a 9—day forecast is expected to be more accurate than
12-hour forecasts on the least predictable 10-15% of cases. It follows that the chances that both a
large uncertainty 12-hour forecast and a small uncertainty 9—day forecast would appear on the
same day and in the same area is on the order of 1-2%. In other words, in an average year and at
any location 4-6 days are expected when a 9-day forecast can be made with the same or slightly
higher certainty than a 12-hour forecast. As a reference, both of these forecasts would exhibit a skill
of the level of an average 3-day forecast.

6. CONCLUSION

The above analysis of the NCEP global ensemble forecast system was based on verification results
of the ensemble mode and higher resolution control forecasts, the former stratified according to the
value of the ensemble mode, which represents a measure of how tightly or loosely distributed the
ensemble members are. The ensemble forecasts are found to possess a substantial amount of
resolution in the probability space, and therefore can reliably indicate, at the time weather forecasts
are prepared, the case dependent level of forecast uncertainty. It was shown that the case to case
variations in forecast uncertainty are substantial. For example, 10~15% of the 1—day forecasts
identified as the least and most uncertain by the NCEP ensemble have associated success rates of
92% and 36%; the same numbers for 4 (and 12) day forecasts are 71% and 17% (35% and 11%).
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The fact that 25% of all cases are affected by the results described above highlights the relevance of
the ensemble approach to everyday weather forecasting. At any location and at any lead time both
the low and high uncertainty cases in Fig. 2 are encountered, on average, once a week. We should
keep in mind that less frequently occuring cases with extremely low or high predictability would be
associated with variations in verification statistics even more extreme than those presented in Fig.
2.

A further analysis of the resuilts, along with those of other studies (see, e. g., Toth and Kalnay, 1995)
suggests that on one hand, daily weather prediction for the 6 to 15 days range is possible in cases
identified by the ensemble as highly predictable, with the same accuracy and confidence as that of
short range forecasts with poorer than average predictability. And as the example of Fig. 3 indicates,
from time to time even extremely anomalous weather patterns can be forecast with high confidence
in the extended range.

On the other hand, in flow configurations with unusually low predictability, the skill of short range
forecasts is expected to be as low as average medium-range, or above average extended range
forecasts. The large variations in forecast uncertainty are a function of (1) the size and distribution of
errors in the analysis fields used to initialize NWP forecasts, and (2) the particular evolution of flow
patterns from initial to final forecast times. Variations in forecast uncertainty are a direct
consequence of the chaotic nature of the atmosphere and are out of the control of the forecasters.

Before the advent of ensemble forecasting, forecasters had no or very limited advance knowledge
of these changes in forecast uncertainty. With ensemble forecasting, as recent studies have
demonstrated, these dramatic changes have become routinely predictable. How probabilistic
information from the ensemble can be conveyed to, and used by forecasters and end users will be
briefly discussed in the next section.

7. DISCUSSION

71 Full forecast probability distributions

In the present paper ensemble mode and control forecasts were evaluated. Both of these systems
generate single value or categorical forecasts, though the former system also provides case
dependent uncertainty estimates. This additional information, as we argued above, can make a
substantial difference in terms of the utility of forecasts in real life decision making processes. The
ensemble forecasts, however, can also provide full forecast probability distributions, thus further
increasing the potential economic value attainable from the use of weather forecasts. The
generation and use of probability distributions, instead of single value (or categorical) forecasts
requires a conceptual change on the part of the forecaster but this is a change necessary for
realizing all the benefits an ensemble has to offer.

Consider, for example, users who are sensitive to sub—freezing temperatures. If a particular user
incurs large losses in case he/she does not protect against freezing temperatures (low cost—loss
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ratio), he/she will want to know about the probability of freezing, and take action, even if freeezing is
not the most likely forecast event. Providing a full forecast probability distribution will well serve the
interests of all users. As noted earlier, such forecasts can be made by statistically postprocessing a
single control forecast; however, the quality of these probabilistic forecasts remains below that
based on an ensemble of forecasts (Talagrand, 1999, personal communication).

7.2 Utility of ensemble forecasts

The addition of reliable, real-time information on variations in forecast uncertainty is the main
contribution of an ensemble that can make a large difference in the economic value of weather
forecasts. For many potential users, this may make the forecasts practically usable, as compared to
relying strictly on climatological information (e. g., Toth et al, 2000). Let us consider again a user who
is sensitive to subfreezing temperatures, but whose cost of protection is close to the losses he/she
suffers if not protected (high cost-loss ratio). This user, unless supplied with very accurate
forecasts, will choose, based on the climatological frequency of the harmful (subfreezing
temperature) event o either always protect (in case the harmful event has a high climafological
frequency), or never protect (low climatological frequency, see, e. g., Richardson, 2000). Beyond a
very short lead time, the average hit rate of a control forecast drops dramatically (see dotted green
curve in Fig. 2), and the users, in order to minimize their losses, have io resort to using climatclogical
information. ‘ ~

Ensemble {orecasts, however, can identify forecast cases when accurate forecasts can be rhade
even at longer lead times. Users can benefit from this by altering their strategy and taking protective
action when the event is predicted with a low forecast uncertainty, in case they would never protect
based on low climatological freezing temperature frequency; or on the contrary, would skip taking
protective action if, on a particular day, the occurence of non—freezing temperature is predicted with
jow uncertainty, in case of high climatological frequencies of freezing temperatures. Note that in the
short lead time range potential users in an intermediate range of cost-loss rati‘o,s can benefit from
slightly improved forecasts provided by a higher resolution control forecast. Nevertheless users
with cost—loss ratios in the low and high range can benefit only from ensembie forecasts, even at the
24-hour lead time (see Fig. 1 in Toth et al., 2000). And beyond 3—day lead time the ensemble offers
more economic benefit for all users (see Richardson, 2000; Mylne, 1999; Toth et al., 2000).

The performance of NWP forecasts, whether control or ensemble, are negatively affecied by the
use of imperfect forecast models. The hit rates reported in this study, for example, are lower than
they would be under ideal conditions, due to simplifications in model formulation. The utility of
ensemble forecasts is also limited by shortcomings in the formation of the ensemble. The NCEP
ensemble, for example, accounts for forecast uncertainty related only 1o errors in initial conditions,
but not to errors caused by model imperfectness. Therefore the range of foreseeable variations in
forecast skill would be wider could we predict the occurence of flow dependent random or
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systematic model errors. The results in this and other studies evaluating operational ensemble
forecasts naturally reflect all these limiting factors and represent the currently operationally
attainable levels of skill. Under these limiting conditions, the ensembles exhibit great value beyond
that of single control forecasts, and are ready to be used by forecasters and end users alike. The fact
that the system is not perfect and can be improved in the future should not stop or slow anyone from
taking full advantage of what ensemble forecasting can offer now.
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