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Summary. A posteriori evaluation and verification of analysis and assimilation algorithms is discussed
in the framework of statistical linear estimation. It is shown that it is essentially equivalent to perform
diagnostics on the innovation vector or on the information-minus-analysis (ImA) difference, i. e. the
difference between the estimated fields and the information (including observations) used in the estimation
process. Interpretation of the statistics of either quantity requires a priori hypotheses which cannot as
such be objectively validated. In a variational estimation process, one simple significant diagnostic is the
minimum of the objective function. In strong-constraint variational assimilation, useful information on
the model error must be contained in the observations-minus-minimizing-solution (OmMS) difference. It
is suggested that a positive convexity in the temporal varaition of the squared OmMS difference is a sign
of model error. The adjoint solution, which consists of the Lagrange multipliers associated with the
(strong-constraint) model equations, must also contain useful information.

I. INTRODUCTION

Analysis and assimilation of observations can be described as processes intended at estimating as
accurately as possible the state of the atmospheric flow, using all available relevant information.
The available relevant information essentially consists, in addition to the observations proper, of a
prior background estimate of the state of the flow, of the physical laws which govern the
evolution of the flow (available in ﬁractice under the form of a discretized numerical model), and
of statistical or dynamical properties of the flow, such as for instance the approximate
geostrophic balance of middle latitudes. The data (individual pieces of information) are
combined together inrthe estimation process, each individual datum being given a weight which
is meant to reflect the confidence granted to that datum. The weights are therefore essentially
inversely proportional to the errors which statistically affect the various data. Much uncertainty
remains however as to what these errors are (very little is quantitatively known for instance on the
errors affecting numerical models used in weather prediction), and there potentially exists much
room for improvement of analysis and assimilation methods through simply a -better-
specification of the a priori assumed statistics of the errors affecting the various sources of

information.

These notes discuss a few aspects of a posteriori evaluation and validation of analysis and
assimilation algorithms. The discussion essentially revolves around the following ‘question. Is it
possible, by a posteriori objective verification, to identify 'errors', or imperfections of some sort,
in the a priori specification of the weights used in the estimation algorithm, and to correct for -
these imperfections ? What is meant here by 'a posteriori objective verification' is comparison
between the estimated fields and whatever relevant quantitative information may be available. If
it.is clear that objective assessment of the quality of an estimation procedure can be made only

against observations which are independent of the information used in the estimation process
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itself, the fit of the estimated fields to that information can nevertheless provide useful
diagnostics. An important fact stressed below is that objective validation of an estimation process

requires a priori hypotheses which cannot as such be objectively validated.

Most of the algorithms. used at present for analysis and assimilation of meteorological
observations can be des‘cribeci as particular applications of the theory of statistical linear
estimation, and the discussion below lies entirely within the range of that theory. Section 2 is a
reminder of a few basics. facts about statistical linear estimation, including facts which have so far
been little used in meteorological applications. Section 3 describes a number of diagnostics
which can be performed on the difference between estimated fields and the information used in
the estimation process. Section 4 is more specifically devoted to diagnostics, bearing in
particular on the errors in the assimilating model, which can be made from the results of strong-
constraint four-dimensional variational assimilation. Some additional comments are given in

Section 5.

2. A FEW BASIC FACTS ABOUT STATISTICAL LINEAR ESTIMATION

A fairly general presentation of the theory. of statistical linear estimation is as as follows. A vector
x, describing the state of the system under study, is to be estirﬁated. " The vector x belongs to the
state space S, with dimension n. The quantitative information available for estimating x makes
up a vector z, belonging to the information space I, with dimension m. The information vector is

related to the state vector through the relation
¢=Tx+{ o @D

where I is a known (and possibly approximate) operator, represented by an m x n matrix, and {
is a residual representing the various 'errors’ in z. The vector { is assumed to be known only

through its statistical properties.
We now look for an estimate x2 of x of the form
x2.= o+ Az : : : : : {2.2)

where o and A are respectively an n-vector and an n x m matrix to be determined under the
following conditions
- the estimate x2 is invariant in a change of origin in state space
- the statistical variance E[(x2-x)T(x3-x)] of the estimation error x3-x (where E denotes statistical
expectation and T transposition) is minimum.
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The solution to that problem is

x@ = [[TS-1771 PTS-I[z-E(g)] o | (2.3)
i e.

A= [TTS-1r]1 1Ts-1 | | (2.4a)
and

@ = - AEQ) (2.4b)

In these equations, S is the covariance matri)F of §,i.e.
'S = E{[{- E(QI [£-EDIT) | (2.5)
The corresponding estimation error x2-x = A[{ - E(Q] is unbiased
E(x2-x) =0 (2.6a)
while its covariance matrix reads
P? = E[(x2-x) (x2-x)T] = [I'TS-II)-1 | (2.6b)

The estimate x2is called the Best Linear Unbiased Estimate, or BLUE, of x from z. It is

unambiguously defined if and only if the operator I" is one-to-one, i. e. if and only if

I'x; # Tx, for any two distinct vectors x; # x, in state space (2.7)

This is an observability condition (informativity might be here a more appropriate word) which
expresses that the vector z contains information, either directly or indirectly, on every component

of x. It implies m 2 n. We will denote m = n + p.

We mention two interesting properties of the BLUE.,

1. The matrix A (2.4a) is a left-inverse of I, i. e. AT =1,,, where I,, is the unit matrix of order n.
This means that the BLUE obtained from a non-noisy ({=0) information vector is the exact state
vector of the system.

2. The BLUE is invariant in any linear change of coordinates in either state or information space.
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This means in particular that the variance E [(x2-x)T B (x2-x)] is minimum for any n x n
symmetric positive-definite matrix B, i. e. the estimation error is statistically minimum for any

(quadratic) norm in state space.

Unless otherwise specified, it will be assumed in the following that the information vector is (or
has been) unbiased, i. e. E({) = 0.

When the observability condition (2.7) is verified, it is always possible, through an appropriate

change of coordinates in information space, to put the information vector under the form

7= (2.8)

xb =x+ Cb)

y=Hx+¢€
where xP is called a background estimate of x, and y is a complementary vector of information,

with dimension p, associated with an information operator H. The change of coordinates can

always be defined in such a way that the errors ¢b and € are uncorrrelated

E({Pel) = 0
Introducing the covariance matrices of the errors {b and &, viz..,

P® = B((P¢dT)  and R = E(eel) | (2.9)
equation (2.3) then takes the familiar form

x@ = xb + Kd - (2.10a)
where d is the innovation vector

d =y - Hxb | | : i . \,.(2.10b)
and K is the gain matrix

K= PPHT [HPPHT + R]-] (2.11)

We note that
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HPPHT + R = E(ddT)
Equation (2.6b) takes the form
p2 = pb. pbyT [HPPYT + R}-! HPD . (2.12)

Alternatively, the BLUE can be defined through a variational approach as the minimizer of the

following scalar objective function, defined on information space
§ - JOH=W)[TE-2]TSI[TE-2] (2.13)

Minimization of (2.13) has a simple interpretation. For any two vectors 17, and 7, in

information space, the quantity
(1/2) ;TS 7, , (2.14)

is a proper scalar product, often called the Mahalanobis scalar product associated with the
covariance matrix S. Minimizing (2.13) therefore amounts to looking for the point in the image
['(S) of the state space which lies closest to z in the sense of the scalar product (2.14). That point
is the orthogonal projection, in the sense (2.14), of z onto I'(S). The BLUE x2 is therefore the

inverse, through T, of the orthogonal projection of z onto the image space I'(S).

As already said, the matrix A defined by (2.4a) is a left-inverse of I". Conversely, any left-inverse
of I' is of the form (2.4a) for some symmetric positive-definite S. Any estimation scheme of the
form (2.2), where A is a left-inverse of T', can therefore be considered as the BLUE of x for some
expectation and covariance matrix of the information error {. In the background-innovation
representation (2.8), saying that A is a left-inverse of I' is equivalent to saying ‘that x2 is of the

form (2.10a-b), where K is any n x p matrix.

Most analysis and assimilation schemes used in meteorological applications can be decribed as
determining the BLUE of x corresponding to some (often implicitly) prespecified E({) and S.
This is true of any scheme of the form (2.10a-b), and in particular of Kalman filtering, of three-
dimensional variational analysis, and of four-dimensional variational assimilation (under both its

weak- and strong-constraint formulations).
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3. THE INFORMATION-MINUS-ANALYSIS DIFFERENCE

We now discuss the problem of a posteriori evaluation of analysis and assimilation schemes. We
will assume that the information operator I' is known, and consider schemes of the form (2.2),
where A is a left-inverse of I'. Questions that naturally arise in this context are for instance the
following. Is it possible to objectively determine if a given scheme is optimal, in the sense of the

BLUE ? Assuming a scheme has been shown not to be optimal, how is it possible to improve it ?

A readily available quantity is the difference between the information vector and the

corresponding values in the analyzed fields, viz.,
0=z-Tx2

0 belongs to information space. We will call it the information-minus-analysis‘(ImA) vector. The
magnitude of that vector is essentially determined by the a priori specified expectation vector
E({) and covariance matrix S. That magnitude cannot therefore be used as a measure of the
quality of the estimation, and cannot in particular be used for comparing the quality of two
different estimation processes. This can be done only by comparing the analyzed fields with
observations which have not been used in the estimation process, and.more precise1y4with
observations which, in addition to béing non-biased, are affected by errors which are themselves

uncorrelated with the error vector .

The ImA difference can nevertheless be a powerful diagnostic tool, as we will discuss now. In the

background-innovation description (2.8-2.10), the ImA difference reads

5o - xb-xa= -Kd o o G
\y-Hxa =(,-HK) d s ' : o

where Ip is the unit matrix of order p. Eq. (3.1) shows that § is a linear transform of the

innovation vector d. The corresponding’ transformation is invertible since

¥

d =y - Hx® - Hxb-x2) -
The innovation and ImA vectors therefore contain the same information, but many features may

be more clearly apparent on the latter. Looking first at the expectation of the ImA difference, it

must be zero for an optimal system.
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E(z-Tx) = 0 o | (3.2)

If, as required above, the matrix A is a left-inverse of I, a non-zero expectation for the ImA.

difference is necessarily the sign'that a bias has not been properly taken into account in the error

4
The covariance matrix of the ImA difference ‘reads

A =E[88T = § - (OIS TT | | (3.32)
or equivalently

E[(z-Tx?) (z- an)T] = E[(T'x-2) (Tx - 2)T] - E[(Tx2- I'x) (Ix? - I'x)T] ~ (3.3b)

The term subtracted on the right-hand side of these equations is positive, which means that the
BLUFE will fit the information z to within the correspondmg error { (Hollingsworth and
Lénnberg, 1989 have called efficient a system which possesses that particular property). More
precisely, eqs (3.3) show that, as the estimation error w111 decrease (as a consequence for instance
of the use of an increasing amount of 1nformat1on) the magnitude of the ImA d1fference will

increase to asymptotically saturate to the level of 1nformat10n ErTor.

The Pythagorean form of eq. (3.3b) means that the triangle defined by the three 'points’ z, T'x@,
I'x has a right angle (with respect to the orthogonality defined by statistical covariance) at point

I'x2. More generally, the ImA difference and the estimation error are statistically uncorrelated
E[(z - Tx?) (x2 - x)T) =0 3 7 ‘ ; _ (3.4)
This impo‘rtantproperty characterizes the BLUE.

An‘y' statistically significant discrepancy between the a posteriori observed statistics of the ImA
difference and the 'predicted' statistics (3.2-3), such as for instance an ImA variance that is larger
than the variance of the corresponding inforrrtation error component is necessarily the sign of a
mlsspemflcatlon in the a przort statistics of the information error {. How to interpret such a
dlscrepancy, and how to determine whether it can be used for improving the estlmate x2, or the
estimation error covariance P2, nevertheless require some care. It results from the variational
~ formulation (2. 13) of the BLUE, and from its mterpretatmn in terms of the Mahalanobis norm
2. 14) that the TmA difference is the component of £ orthogonal (in the sense 2.14) to the image
23
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space I'(S). That component is discarded in the estimation process, and the a priori specified
statistics for that component have no impact on either x2 or Pa. As a consequence, any
inconsistency between the a posterzorz observed and the predicted statistics of the ImA dlfference
can always be explained out as belng due to mlsspecrﬁcatlon of quantities which have nok
influence on either the estimate or the estimated estimation error (what would change the analysis
would be to modify the component of E({) along F(S) or to modlfy S in a way which would
change the orthogonality and the corresponding prOJect1on I'x2).  Another consequence is that
con51stency between predicted and a posteriori statistics of the ImA dlfference is neither a
necessary nor a sufficient condition for optimality of a linear estlmatlon system, and that there is
no way, on the basis of only statistics of the ImA difference (or for that matter of statistics of the

innovation vector d), to objectively determine whether such a system is optimal or not.

Independent additional hypotheses are necessary in order to be able to draw conclusions from
the ImA difference or from the 1nnovat1on vector. An example is glven by the result of Meh;a
(1970), which states that the covariance matrlces of the model and observation errors can be
determlned in a Kalman filter from an infinite sequence of observat1ons under a condltlon which
is essentially a condition of observability. But that result is valid only under the a pllOll
hypothes1s that all errors are uncorrelated in time. That hypothesis cannot be checked
independently. Another example is given by the approach followed by Hoang et al. (1997)

who determine the gain matrix of a statlonary Kalman f11ter 1ndependent1y of any quantltanve'
hypothesis on the model or observation errors, as the matrix which a posteriori mlnlmlzes the
amplitude of the innovation vector. In addltlon to the fact that it is not clear what th1s process
can optimize beyond the estimation of ‘the observed parameters that approach requires the

various errors to be uncorrelated in time, at least over infinitely long time lags

Studies performed a few years ago on what was then the Optimal Interpolation system in
operational use at ECMWF showed that retaining some data from the analysis statlstlcally
improved the subsequent forecast (Kelly, pers. com.). That was certamly a sign that the OI
system was not optimal, under the hypothesis however that the verifying observatlons were both
unbiased and affected with errors uncorrelated with errors affectmg the 1nformat10n used in the
analysis. It must be stressed that this kind of diagnostics can show an estrmatlon system is not
optimal, but cannot show it is optimal. More recent studies, perforrned on the 3D- Var analys1s
system of ECMWF (Kelly, 1997), have not shown any symptom of sub- optrrnahty smnlar to the_

ones observed on the o)1 systern

The conclusion is that a posteriori Validation of an estimation system is impossible without a
priori, unverifiable, hypotheses. This raises the obvious following questions. In meteorological
24
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applications, what a priori hypotheses can legitimately be made, concerning for instance the
absence of correlation between different types of errors ? And, once those hypotheses are made,
what can be objectively determined, concerning the statistics of the error vector {, from the

available observations ? These fundamental questions will not be discussed here.

A particular simple and significant diagnostic on the ImA difference is the value of the objective

function (2.13) at its minimum, viz.,
Jpin= Jx?) = (1/2) [Tx2- 7 1TS-1[ I'xa- 2 1. .

Jmin is the Mahalanobis norm (2.14) of the ImA difference. It also reads in the background-

innovation representation (2.8-11) (Bennett et al., 1993)
in = (1/2) dT[HPPHT + R]-14

I. €., Jyip 1is also the Mahalanobis norm of the innovation vector, but for the norm associated.

with its own covariance matrix. One consequence of this fact.is that, on statistical average .
ElJpin1 = p/2 o , - S : : (3.5)

where p is, as before, the dimension of d. If the error { is in addition assumed to be gaussian; the

variance of J,,;, is equal to
Var[Jpin] = p/2 (3.6)

In ‘meteorological applications, p lies at the very least in the range 103-104 (it lies in the range
10°-10° in the present 4D-Var system of ECMWF), so that the fluctuations of Jinin Will be
negligible in comparison with its expectation E[J,,;, ]. This is likely to remain true even if the
information error is not gaussian. In the present ECMWF 4D-Var system, J,,;, is too small by a
factor of about 2-3 (Rabier, Jirvinen, pers. com.). This means that the amplitude. of . the

innovation vector is a priori largely overestimated.

The objective function J will normally be the sum of a number of independent terms, such as the
Jp, J, and J, terms of standard 4D-Var
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A k
JH=Y, J®
j=1

where
J(&) = (112) [Tj&- 2787 T - 7]

In these equations, z;is an m j-dimensional component of z(Zjmj=m), and the rest of the

notations is obvious. It is possible to show that the expectation of the j-th term at the minimum is
E[Jj(xa)] = (1/2) [m;- tr (1"]-T Sj'1 I; PH] - : : 3.7

Although the trace on the right-hand side may be difficult to calculate explicitly, especially for
large values of m;, this equation provides an additional potentially useful diagnostic.

4. THE CASE OF STRONG-CONSTRAINT VARIATIONAL ASSIMILATION

In the case of strong-constraint variational assimilation, a very useful diagnostic is the difference
between the minimizing solution and the observations, which is a sub-component of the whole
ImA difference. A perfect model will fit observations to within observational error. - Therefore, if
statistics of all errors other than model errors are properly specified, any observation-minus-
minimizing-solution difference (or OmMS difference) that is statisticaly and significantly larger
than the corresponding observation error will necessarily be the signature of model error. This

can provide a very powerful quantitative diagnostic.

The temporal variation of the OmMS difference can also be very useful. If the model error,
accurnulated over the assimilation window, is significantly larger than the observation errors, one
can expect the closest fit of a model solution to the observations (which is what strong-constraint
variational assimilation produces) to be closest to the observations at about the mid-point of the
assimilation window, and farthest from the observations at both ends of the window. More

precisely, let us consider a one-dimensional perfect model of the form

dx = 3.8

where y = a+if3 is a complex constant. This model is used to variationally assimilate observations
contaminated by noise with variance s. The variance of the estimation error, which is the
statistical mean of the squared difference between two exact solutions of (3.8), will be of the form

aexp(2at), where a is some positive constant. As for the OmMS variance, it will be equal,
26
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according to eqs (3.3), to
E[(QmMS)Z] = 5 - a exp(201)

Whatever the value of o, the second time derivative of E[(OmMS)?2] will be n:on-positive; The fit
of a perfect model to noisy observations has a non-positive convexity (see also Ménard and
Daley, 1996). It is not clear whether this result, which is exact for a constant-coefficient, one-
dimensional model, generally extends to more complex models. But, together with the argument
presented at the begmnmg of this paragraph it strongly suggests that a posmve convex1ty in the

temporal variations of (OmMS)2is a sign of model error.

Still another potentiaﬂy useful diagnostic of variational assimilation is provided by the adjoint
solution corresponding-to the minimizing solution. The adjoint solution, through the adjoint
equation, is a linear transform (actually a temporal integral) of the OmMS difference. It does not
contain as such anything that is not already contained in the ImA difference. But it consists of
the Lagrange multipliers associated with the constraints expressed by the model equations
(Thacker and Long, 1988, Talagrand, 1989). As such, it says how the model equations should
be modified (by addition of a forcing term) in order to further decrease the objectlve function.

It is not clear whether much useful information is contained in the Lagrange multrphers in an
1nd1v1dua1 realization of the Varratlonal process. But the statistics of the Lagrange multlpllers
necessanly reﬂect the statistics of the various errors, and in particular of the model errors. As.

such, they presumably contain very useful information.

5. CONCLUSIONS

A number of a posteriori diagnostics of analysis and assimilation have been presented and
discussed. All these diagnostics bear on quantities which are components, or linear transforms, of
the information-minus-analysis difference. All these quantities are necessarily computed in a
variational algorithm, so that performing the proposed diagnostics only requires accumulation of
statistics on already available quantities. Some of the discussed diagnostics are already routinely
performed in several places, while others, such as for instance diagnostics on the adjoint solution,

arc new.

One important conclusion is that interpretation of the proposed diagnostics requires a priori
hypotheses which cannot as such be objectively validated. An obvious, and perfectly legitimate,
hypothesis of this type is that errors in observations performed by different instruments are
statistically uncorrelated. But even that simple hypothesis must be used with some care. If the

observations are closely located in space or time, the representativeness parts of the
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corresponding errors will be correlated.

One major source of uncertainty in assimilation of meteorological observations lies in the errors
in the assimilating model. It is probably for identifying and quantifying this type of errors that

the diagnostics discussed here can be most useful.
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