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AAbstract

Innovation and residual sequences from ECMWF 3D- and 4D-Var systems have been studied.
First, the Hollingsworth-Lénnberg method is applied to the innovations in order to partition the
perceived forecast error variance into contributions from observation and background errors. The .
estimated forecast error variance of the background trajectory over the 4D-Var assimilation win-
“dow is characterized by an upwards intensifying growth in ‘thé troposphere, as well as with a
broadening of its horizontal covariance length scale. The estimation of these statistics for 4D-Var
therefore requires innovations which are homogeneously spread in space and time. Second, the
residuals are used for checking the fit of the analysis to observations over the assimilation win-
dow. This fit should, in theory, reveal the effect of model error in a strong constraint variational
problem., In this study a convex curve with a u-shape is found for this fit implying that the perfect
model assumption of 4D-Var may be violated with as short an assimilation window as six hours.

1. INTRODUCTION

There is a large number of statistical parameters in an assimilation system which need to be estimated
and specified for the syst'em to perform optimally. Among thé most important parameters are the ob-
servation and background error variances, as the ratio of these statistics determine the amplitude of
the analysis increments. In principlé, it is not strictly necessary to fix the absolute values of these sta-
tistics, as long as their relative magnitude is realistic. With this point of view, the observation error
variances describe the relative information content of the observations with respect to the background
information in a given assimilation system. The observation error variance can be statistically estimat-
ed from the innovation sequehce. Application of a best estimate for the observation error variance in
one component of the observing network implies that the error statistics of all the other sources of in-
formation must be adjusted accordingly and must reflect their true inf_o;mat,ion content. Furthermore,
a relevant measure of the magnitude of a model error in a strong constraint formulation of 4D-Var
assimilation system can only be obtained if the observation and background error variances are cor-

rectly specified. Therefore, even if it is possible in principle to have an assimilation system with the |
variances specified only in relative sense, a more thorough evaluation of the system requires the ab-

solute values for the statistical parameters.

2. BACKGROUND AND OBSERVATION ERROR VARIANCES

Statistical estimation of observation and background error variances from innovation sequences is
well established (Buell 1972, Rutherford 1972, Hollingsworth and Lonnberg 1986, Lonnberg and Holl-
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ingsworth 1986; for more references, see for Daley 1991 and Bouttier and Courtier 1998). The emphasis
in this paper is laid on the behaviour of these statistics over the assimilation window and on the aspects
related to 4D-Var in particular. The innovation and residual sequences are extracted from the ECMWF
implementation of 3D-Var (Courtier et al 1998, Andersson etal 1998, Rabier et al 1998) and 4Dv-Valr
(Rabier et al 1997 and 1999) data assimilation systems which apply an assimilation window of six
hours.

The innovation sequence d; at location i is defined as a difference between the observations y; and the
background x; as processed by the appropriate observation operator H;

It is assumed here that the observation operator also tncludes the model integration in time. Replacing
the background x;, in this formula with the analysis x, would define the residual sequence. The cov-
ariance between the innovation sequences at locations i and j is given as an average over a sample by

cov(i, j) = did?

In an ideal case, a histogram of covariances behaves as displayed in Fig. 1a. The dots represent the
binned covariances as a function of the separation between i and j, in this case for AIREP (aircraft re-
port) temperature over North Arnerica at 200hPa. The covariance is zero for large horizontal separa-
tions, over 500km, say. With decreasing separation, the covariance builds up and, in case of
_. uncorrelated observation errors, th1s is entirely due to the horizontal correlation of forecast error. Fit-
trng acurve through the points of the histo gram and extrapolatlng to zero dlstance the percerved fore-
cast error variance implied by the sample of 1nnovatlons can be partltroned 1nto contnbutlons from
background error and observatron EITor. In some cases, however a srgmﬁcant covanance is present
even for large station separations. This can be 1nterpreted as amean d1fference between the short range
forecast and the observatrons This is an indication of a bras erther in the forecast model or in the ob-
servmg system. ThlS estrmatlon method does not provrde a clean way to separate this b1as from the

random part of the covanance The bras must be deduced usmg complementary 1nformat10n

In4D-Var, the background is specified at the beginning of the assimilation window and there is a fore-
cast error associated with the background trajectory which extends over the assimilation window. The
background error covariance of Fig. 1a corresponds to the innovations of the first half an hour of the
six hour assimilation window of 4D-Var. At the middle of the six hour assimilation window (Fig. 1b)
the forecast error variance of the background trajectory is increased compared to the variance at the
initial time. The horizontal length scale of the forecast error covariance at the middle of the assimila-
tion window is also larger than the length scale of the background error covariance at initial time. The
estimation of the background error variance must therefore correspond the value at the initial time of
the assimilation window. The same is'also true if one wishes to evaluate the covariance length scale
implied the background penalty term of the variational assimilation system with the covariance length

scale as deduced from the innovations.
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Figure 1: Histogram of innovation covariances at the beginning (a) and at the middle (b) of the six

hour assimilation window for AIREP temperature over North America at 200hPa. The 4D-Var
innovation sequence is from 1 Sep 1997 to 15 Oct 1997. Note the different scale of ordinate in (a)

and (b).

Next, the observation and background error variances are estimated over the six hour assimilation

window to reveal their temporal behaviour in 3D-Var as well as in 4D-Var. The variance estimation
presented here uses AIREP component wind over North America at 200hPa. In 3D-Var the background

is valid at the middle of the assimilation window, and the estimated standard deviation of background

93



JARVINEN, H.: A STUDY OF THE INNOVATION AND RESIDUAL SEQUENCES IN VARIATIONAL DATA ASSIMILATION.

a) .b)
5.0 T Y T T T 5-0 T T T T T
wh T ] a0
o o
E E :
§O0FK T T— —q 5% —  —
8 ~ -~ g
5 SN P 2
3 S P o
o S - o -
5 - - & —— __—-———————-—-__._._.-.____/t_’_
-g 20 p—————————— S — 'g 20 F T T T T T T T T T P C
= ’/
] 3 -
7] ) s e
1] _/”’,
L 4 1.0 b p
10 —— estim. obs error std — estim. obs error std
——~- estim. bg error std : ——= estim. bg error std
-—— specif. obs error std — specif. obs error sid
—— - specif. bg error std ——~ specif. bg error std
0.0 ' 1 Il 1 1 0.0 1 L 1 ] i
1 2 3 4 5 [ 7 h 2 3 . 4 5 6 7
© Timeslot ’ Lo L Timeslot

Figure 2: Estimated (thick lines) and speéiﬁed (thin lines) standard deviation of background (dashed
lines) and observation error (solid lines) in 3D-Var (a) and in 4D-Var (b) for AIREP component wind
over North America at 200hPa. The estimation is based on an innovation sequence from 1 Sep 1997
to 15 Oct 1997,

error has its minimum there (thick dashed line in Fig. 2a). The estimated standard deviation of obser-
vation error remains at a constant level, within the estimation uncertainty (thick solid line). The spec-
ified standard deviation of observation error (thin solid line) is in this case largcr than the estimated
one and it is inflated depending on the time difference to the middle of the assimilation window in
order to account for the persistence error. Note that the persistence error in 3D-Var appears as a hor-
izontally correlated error which in the variance estimation contributes to the background error vari-
ance. The correction in the specified observation error standard deviation is qualitatively right but not

quite large enough in this case.

In 4D-Var, in contrast to 3D-Var, the background is specified at the initial time, where the standard
deviation of forecast error of the background trajectory (thick dashed line in Fig. 2b) has its minimum.
There is a monotonic growth of the standard deviation of forecast error throughout the assimilation
window. The background in thJ:s impleméntation of 3D- and 4D-Var is a six hour forecast from the
previous analysis, with the remark that the forecast producing the 4D-Var background is constrained
by the observations in the previous assimilation window. Thus, comparing the level of background/
forecast error standard deviation in Fig. 2a and Fig. 2b, one can note, first, that the initial background
error standard deviation is lower in the 4D-Var system and, second, that the 4D-Var forecast error
standard deviation associated with the background trajectory reaches the level of 3D-Var background
error standard deviation in about four to five hours into the assimilation window. In other words, the
4D-Var assimilation is ahead of 3D-Var assimilation by four to five hours at the very earliest forecast

range.
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Figure 3: Vertical profiles of the background (dashed line) and observation (solid line) error standard
deviation at the beginning (thick line) and at the end (thin line) of the six hour assimilation window

for aircraft component wind (a) and temperature (b) over North Amenca The 4D-Var 1nnovat10n
sequence is from 1 Sep 1997 to 15 Oct 1997.

Pressure [hPa]

Reassuringly for the variance estimation procedure, the estimated standard deviation of observation
error remains at a constant level throughout the assimilation window, and at"the same level in both
3D- and 4D-Var systems (thick solid lines in Fig. 2). This is logical as there is no real reason for the
quality of observations to be function of time.

The growth rate of the forecast error standard deviation associated with the background trajectory over
the 4D-Var assimilation window increases with height in the troposphere. Over well observed areas,
like North America, the forecast error standard deviation of the background trajectory in the lower
troposphere at the end of the assimilation window (thin dashed line in Fig. 3a) is only marginally larg-
er than the initial background error standard deviation (thick dashed line in Fig. 3a), in this case for

AIREP component wind. This is also the case for AIREP temperature errors over the same area (Fig. 3b).
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Near the jet level, however, the forecast error standard deviation at the end of the assimilation window
is almost doubled from the initial background error standard deviation for component wind (Fig. 3a),
and is increased by about 50% for temperature (Fig. 3b). The estimated observation error standard de-
viation (solid lines in Fig. 3) remains unchanged at all levels throughout the assimilation window,

within the estimation uncertaiﬁty.

It has been demonstrated that the error variances and the error covariance length scale evolve over the
assimilation window. Therefore a prérequisite for the variance estimation for 4D-Var is the avﬁﬂabil-
ity of observations which are well spread in space and time, such as AIREP, DRIBU (drifting buoy) and
SYNOP observations. Polar orbiting satellite radiances and scatterometer winds are also well spread in
space and time, but they are, however, affected by the horizontal correlation of obéetvatibn error,
which is hard to separate from systematic model errors. Radiosonde observations, and geostationary
satellite cloud track winds wi'tht(soi'ne éautioh, ére also vefy hs'eful for théir excellent vertical sampling

despite a poor temporal coverage.

3. ANALYSIS FIT TO THE OBSERVATIONS AND THE MODEL ERROR

The residual sequences, i.e. the fit of the analysis to observations over the assimilation window,
should reveal the effect of model error in a strong constraint variational problem (Ménard and Daley
1996). For an ideal 4D-Var with a valid perfect model assumption, the standard deviation of the re-
siduals should be constant or concave over the assimilation window, and at a level sli ghtly lower than
the observation error standard deviation. Violation of the perfect model assumption should manifest
itself in a convex u-shaped curve, With a more pronounced curvature and a higher level of misfit to
observations the higher the model error.

Standard deviation of innovations and residuals over the assimilation window is displayed in Fig. 4
for AIREP temperature (panel a) and for component wind (panel b) for North Atlantic at 250hPa. The
main features of the observation fit to the background (solid lines in Fig. 4) and to the analysis (dashed
lines) are very similar for these two different observing systems. In both cases, the background fit de-
grades monotonically over the assimilation window, and the analysis fit has a minimum close to the
middle of the assimilation window. Figure 5 shows similar plots for DRIBU surface pressure observa-
tions over North and South Atlantic. The fit of the observations to the analysis (dashed lines) is fairly
similar in both areas with a minimum close to the middle of the assimilation window. The quality of
the background (solid lines) at the initial time in the South Atlantic is only slightly worse than in the
North Atlantic. The growth of forecast error standard deviation of surface pressure is however much

more rapid on the South Atlantic.,

The specified observation error variance in this assimilation system at the levels corresponding to

Figs. 4 and 5 for AIREP temperature is 1.3K, for AIREP wind 4.0m/s and for DRIBU surface pressure

140hPa, respectively. Comparing these values to the actual analysis fit in Figs. 4 and 5, one can note

that the values are over-estimétes and therefore there is no way to define the magnitude of the associ-
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Figure 4: Standard deviation of innovations (solid lines) and residuals (dashed lines) in 4D-Var for
AIREP acar temperature (a) and AIREP amdar component wind (b) at 250hPa over North Atlantic. The
curves are based on innovation and residual sequences from 16 to 29 April1998.
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Figure 5: Standard deviation of innovations (solid lines) and residuals (dashed lines) in 4D-Var for
DRIBU surface pressure in North (a) and South (b) Atlantic. The curves are based on an innovation
and residual sequences from 16 to 29 April 1998.

ated model error. Figure 2 also indicates that the observation error variances are not accurately spec-
ified. ‘ ‘

4. CONCLUSIONS

It is instructive to study the innovation and residual sequences over the assimilation window. For 4D-

Var the innovations reveal that the forecast error variance associated with the background trajectory
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grows monotonically over the assimilation window from the initial value of the background error var-
iance. There is an associated broadening of the horizontal length scale of the forecast error covariance.
The growth of forecast error variance intensifies with height in the troposphere. The background error
variance is lower in the 4D-Var assimilation than in the 3D-Var assimilation and the shortest rangé
forecasts of 4D-Var system are ahead of 3D-Var forecasts by about four to five hours. The variance
estimation for 4D-Var requires observations which are well spread in space and time, such as aircraft,
drifting buoy and synop observations, and polar orbiting satellite measurements as well. Radiosonde
observations, and geostationary satellite cloud track wind are also very useful for their excellent ver-

tical sampling.

The residual sequences may be used for studying the model error in a strong constraint variational
problem. In this study a convex curve with a u-shape is found for surface and upper air observations.
This implies that the perfect model assumption may not be correct and it may affect a 4D-Var with as

short an assimilation window as six hours.
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