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ABSTRACT

In its first implementation, the 3D variational (3D-vaf) assimilation system of the Canadian Atmospheric
Environment Service (AES) was configured to be as close as possible to the previous statistical
interpolation (Sl) analysis. In particular, the analysis increments are constructed at a lower horizontal

" resolution on prescribed pressure levels and subsequently interpolated vertically to the n levels of the
model. In the next version of the 3D-var, the analysis increments will be expressed in terms of the model's
own vertical coordinate. This version also includes a new covariance model for the background-error in
which the variances fully vary in physical space while the correlations are considered to be homogeneous,
isotropic but non-separable. Following Bouttier et al. (1997), the multivariate formulation is introduced
implicitly through changes of variables, some of which being empirically determined. The estimation of the
background-error statistics is based on a time-series of differences between two short-term forecasts (the
“NMC” method). The results are compared to estimates based on innovations. The impact of the new
statistics on the analysis is shown through the analysis increments obtained in response to single
observations of different types.

1. INTRODUCTION

Since June 1997, the Canadian Atmospheric Environment Service (AES) has replaced its previous statistical
interpolation (SI) scheme with a 3D variational data assimilation (3D-var) for its global analysis (Gauthier et al.,
1998). The regional analysis is also done operationally with the 3D-var since September 1997 (Laroche et al.,
1998). In its first implementation, the 3D-var was configured to be as close as possible to the previous SI
“analysis which has permitted an evaluation of the impact of data selection on both the analysis and the resulting
forecasts. In this formulation, the analysis increments for winds, geopotential and dew-point depression are
produced on a prescribed set of pressure levels. In the final step of the analysis, these increments are interpolated
vertically to the levels of the model and the hydrostatic relationship is used to derive analysis increments for
temperature and surface pressure from those of the geopotential. This leads to many problems that can be
avoided by doing the analysis directly on the model’s own vertical levels in terms of temperature and specific
humidity. This will be the formulation used in the next version of the 3D-var of AES which will also include a
new covariance model for the background-error. The main focus of this paper is on the multivariate
representation of background-error covariances and their estimation. A methodology based on lagged forecasts
(Hoffman and Kalnay, 1983; Parrish and Derber,1992; Rabier et alt, 1998; Bouttier et al., 1997) from January
1997 was employed to estimate the covariances. ‘

The covariance model is described in section 2. Due to the existing hydrostatic and geostrophic balance
between temperature and winds, one has to consider cross-covariance terms between error made on winds and
temperature. These are dealt with by introducing appropriate changes of variables, some of which are determined
empirically by using linear regression to establish the nature of the relationship between winds and the
hydrostatically and geostrophically balanced components of temperature and surface pressure. Section 3
introduces two methods to estimate background-error statistics: one based on lagged forecasts and another based

on innovations, that is differences between observations and forecasts. The results are presented in section 4 and
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the impact on the analyses is studied in section 5 by presenting analysis increments obtained in response to single
observations of different types. We conclude in section 6 by indicating possible extensions of this work.

2.  MULTIVARIATE RELATIONSHIPS AND THE BACKGROUND-ERROR COVARIANCE MODEL
The numerical weather prediction (NWP) model of the Canadian Meteorological Center (CMC) uses a terrain-
following vertical coordinate

n=(p - pp/(p;—Pp)
where py = 10 hPa is the pressure at the top of the model’s domain. Its 28 levels are shown on Fig. 1 and a
detailed description is given in C6té et al. (1998)

The model state can be defined as X= (u, v, T, In q, In pS)T where u and v are respectively the east-west
(zonal) and north-south (meridional) wind components; T is temperature, q is specific humidity and p, surface
pressure. Alternatively, the wind components can be represented in terms of the streamfunction ¥ and velocity
potential % which represents the rotational and d‘ivergent components of the wind field. This is convenient
because distinct physical and dynamical processes govern these two components. We will therefore represent
the model state as ' v

X=(¥,% T,inq,Inpg)" .
In its discretized form, each of these variable is itself represented by a state vector of dlmensmn of the order of
108,
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Fig.1: Vertical distribution of the 28 1y levels of the CMC numerical weather prediction

model.
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A 3D scheme, by opposition to a 4D data assimilation scheme, takes the background-error statistics to be
stationary in time. With the definition of model state given above, the background-error covariances describing
the 6-h forecast error statistics can be expressed as

(ow™y ey (#1T) (Pind)) (Fhpl) )
@¥Ty 'y T (ing)  (xinpl)
B, = (Tey (Ty") (TT') (Tinq') (Tinpl) |, 2.1
| nq¥") (ngx") (nqT") (naind") (gl pl) | |
\ P, W7 Yinp,x Winp, T' Xinp, Inq Xinp, Inp]) Y,

where the brackets stand for a time average over a period of one to three months typically.

The underlying dynamics create a coupling between the error of these variables. For instance, mass and the

streamfunction are coupled through the linear balance relationship
V2P, = Vf V¥ = Py = B() ¥ . (2.2)
where f = 2Q sin ¢ with @, the latitude, and Q = 21/1, is the angular frequency of the Earth with T = 24h. In
(2.2), the convention adopted is that Bis a matrix relating the discretized state vector of ‘¥ to that of Py. With
the vertical discretization given above, the mass variable can be written as
P=® +RT In p;

with T = 300K being a constant reference temperature. The geopotential @ is related to temperature through the
hydrostatic relationship ’

d (ps — Pp)
2 p(m) =R
an P =R - )

where R = 287 ] kg‘1 K is the gas constant for dry air. In its discretized form, (2.3) can be represented as T =

m) , (2.3)

A @ and A is assumed independent of longitude or latitude, thereby neglecting the weak dependency of (2.3) on
variations of surface pressure. Combining this with (2.2), the geostrophically balanced component of
temperature Ty and surface pressure are

Ty = ABY TY,

(np)y  =@y/RDI = SY.
The balanced component only represents part of both T and p, and we introduce the unbalanced components of T

and p,as T" =T — Ty and (In p) = In p, - (In p,)y to represent the remaining component.

Another relationship exists between the streamfunction and the velocity potential through a typical Ekman
balance relationship that causes winds to deviate from the geostrophic balance due to the presence of surface
friction. This creates an inflow (outflow) towards the center of a low (high) pressure system. As noted in
Polavarapu (1995), this establishes a partial coupling between the divergent wind component and the
streamfunction which is inostly active near the surface of the model. As we did for temperature, we express the
velocity potential as ) = X + X' and we assume an as yet undefined scalar relationship between )y and ¥ of the
form x5 (A,0.,n) = E(p,n) ¥(A,9,n). This form is suggested by the Ekman layer dynamics that would make the
coupling between ¥ and ¥ to depend on both latitude and altitude.
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By introducing the change of variables

v ] 1 o o o o \[ ¥] B2
X E I 0 0 0 X' x' )
x=| T | = T 0 I 0 0 T = M| T =MX , (2.4)
Ing 0 o 0 1 o Ing Ing
| inp,_] S 0o o0 o 1 JiLlnp_| |_Inp,_|

we assume that the dependencies between the analysis variables are eliminated. Therefore, in terms of these

variables, the error covariance model By is

¥¥’y 0 0 0 0
0 (x'™) 0 - 0 0 RE
U IT
B, = 0 ‘0 TT') 0 0 2.5)
0 0 0 (ngingy 0
0o 0 0 0 (np,inp)")
The covariances By, are implicitly defined from (2.4) and (2.5) and are
By = MByM
T : T ' ! T
( Byy By E Byy T 0 ByyS \
T S T
EB,,, [Bx,x.+EBWE ] EB,, T 0 v EB"{"“S | ‘
= TBy,  TByE'  [TBu,T +B] 0 TBy, S’ : (2.6)
0 0 0 - . B Ing Ing 0
T T T
\ SByy S ByyE SByyT 0 [5 ByyS + B, ps'] )

The only cross-terms appearing in (2.6) are due to the geostrophic and Ekman coupling involving the

streamfunction.

The covariances can be factorized as

B, =DCD
where the diagonal matrix D
oy 0 0 0 0
0 Oy 0 0 0
D = 0 0 op O 0
0 0 0 o q 0
0o 0 0 0 o Inp,
and the block-diagonal matrix C
CW 0 0 0 0
0 CX.X. 0 0 0
C = 0 0 Cop 0 0
0 0 0 C Inqing - 0
0 0 0 0 Clnpg Inpy

stand respectively for the standard deviations (which vary with latitude and level) and correlations of the analysis

variables.
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The background-error correlations for all analysis variables are taken to be horizontally homogeneous and
isotropic which means that

| (e(pny)e(@ny) =F@n,ng)
with € being the normalized background-error for any of the analysis variables. The correlations therefore only
depend on the horizontal distance r between the two points p and q. In spherical coordinates having their pole

set at p where r = 0, the correlation function F can be expanded in a series of zonal spherical harmonics as
N ‘

F(r,np,nq) = nz(;?a”n(np,nq) Ypa (), | 2.7)

where r=a cos’lu is the great circle distance from the pole, a is the radius of the Earth and YP?.(“) stands for
the zonal spherical harmonics (the subscript p stresses that these coordinates have their pole at point p).
Referring to Boer (1983), Gauthier et al. (1993) and Courtier et al. (1998), one can use the addition theorem for
spherical harmonics to show that the correlation between two spectral components (m,n,np),and (rn',n',nq) is

cmm = (EPm)E (M) |
5,,(T\P,ﬂq) (V2n+1>—1 8n=n' 8m:-m'

and C is therefore block-diagonal, the entries of which do not depend on the zonal wavenumber m. This leads to

a compact representation of the correlations that can be expressed as

C = §TC @y

where S is the inverse spectral transform.

In summary, the covariance model used here is univariate in terms of the analysis variables X'. The
correlations are assumed to be horizontally homogeneous, isotropic and non-separable while the standard
deviations are allowed to vary as a function of latitude and vertical level. In the 3D-var, error covariances for the
model's variables X are only implicitly defined through change of variables. For instance, it has been shown that.

the temperature error covariances are
(TTT) = (TTE) +(T'TT)=[TByy T + Bpp] .

Part of the error is then related to the wind error (through By,y).

3. ESTIMATION OF THE BACKGROUND-ERROR COVARIANCES

To estimate the background-error covariances for the model described in the previous section, two routes can be
taken. One can compare the short-term forecasts against reliable and accurate observations, such as radiosonde
data of geopotential, temperature, winds and humidity. Referring to Hollingsworth and Lonnberg (1986) and
Mitchell et al. (1990), the observational error can be assumed to be uncorrelated between radiosondes and this
permits to obtain estimates of parameters describing the horizontal correlations of the background-error for ¥,
for instance. Estimates of the background-error variance can be obtained as well but care must be taken to take
into account that the observations are not without error themselves. The main difficulty with this approach is that
the data coverage is rather sparse over large portions of the globe such as the oceans and the Southern
Hemisphere. Even over a data dense region like North America, reliable estimates can only be obtained by
collecting data over a period of two to three months. In the end, estimates of the characteristic length of

correlation functions are obtained. The estimate of the variances are representative of their average over a rather
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large latitudinal band. A statistical study of the innovation values ¥ = (y — Hx,) can be very revealing about the
performance of the assimilation system as a whole (Daley, 1992; Dee, 1995).

The origin of forecast error is due to several factors. There is of course the fact that NWP models are far from
perfect and that we are not modelling correctly several atmospheric processes. There is also the presence of
dynamical instabilities in the atmospheric flow which vary in time and space. The forecast error covariances used
in the 3D-var are staitionary and representative of the forecast error averaged over a season typically. One way
that has been found useful and practical to estimate the background-error covariances is to use a lagged forecast
approach. Considering a suite of forecasts XfﬁD valid at time t, obtained from initial conditions valid at time t = t;
— T, the forecast error is equated to

5y, = X _ x(™
with AT = T, — T, being the lag between the two forecasts. Typically, Parrish and Derber (1992) and Rabier et
al. (1998) have used T, = 48 hrs and T, = 24 hrs. By choosing T, = 24 hrs, the spin-up of the model due to
initial imbalances is avoided and the forecast differences are then assumed to be more representative of the

forecast error. Rabier et al. (1998) used different values for T| and AT and did not observe significant variations
of their results. In our present study, a lag AT = 24 hrs with T = 24 hrs has been considered.

A schematic of the lagged forecasts method is shown in Fig. 2. Information from observations over a period
AT will introduce a perturbation between the two states at t = t; + T representative of the initial error. This error
then evolves dynamically according to the model's dynamics thereby introducing some error growth or damping
depending on the local stability properties of the flow. Both of these hypotheses can be questioned. The
representativeness of the initial perturbation is very much dependent on the observational network while the
dynamics of error growth assumes that the model is in a sense perfect. In regions where there are no
observations, the initial conditions are left unchanged so that the initial difference is virtually zero and integrating
it over a period of time AT still leaves us with a vanishingly small quantity. This would lead us to the erroneous
conclusion that there is no forecast error in regions where there are no observations. Moreover, if the model has

excessive damping, it would reduce the initial difference in an unrealistic manner which would again bring us to

Forecast Error

Analysis Frror

Ox(t;+T

(0] (D @n
).(ti X ot X vor
) G
X tj+T X tj +2T

Fig. 2: Schematic of the lagged forecast scheme. The difference 8x(t; + T) = XtI(B— - th(f)r
corresponds to perturbations brought to the initial conditions by the observations
contained in the time interval [t, t; + T]. Local dynamical instabilities cause this initial

perturbation to grow up to time t; + 2T.
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the wrong conclusion. Now that these possible limitations have been stated, we will nevertheless assume that the
dx, are indeed representative of forecast error, at least in terms of their averaged statistics. We now describe
how the forecast error statistics are obtained.

Considering the ensemble average

K .
(Bx) =5 2, 8%, 3.1)

2= ox? =1 Y ax? - Xax). (3.2)
provided any two error vectors 8x; and 5xj are statistically independent.
The normalized increments are defined as

X, = 8x/o ‘ (3.3)
and are such that (X") = 0 and 0')2(. =1,

If these correlations are homogeneous and isotropic in the horizontal, it follows that

(xn My Xy (n)) CaMpMg) 8 8
where Xnm(np) = (S ;"X]'c) In reality, the correlations are not expected to meet this condition exactly so that we
define '

&myng =i > 2 (X ) Xmy)) (3.4)

The coefficients charactenzmg the correlation function (2.7) are given by

a,mpmy = Cmpmy) Vanet (3.5)

In summary, the estimation of the correlation then consists of the following steps:
i.  Compute the forecast differences 6x; = Xi(Tz) - X:T‘),
their bias estimate (8x) and their variance ¢ using (3.1) and (3.2);
ii.  Build the normalized increments X using (3.3);
ili. Compute the spectral coefficients for v, X'» T', In q and Inp to obtain the coefficients of the correlation
function from (3.4) and (3. 5)

Before doing this, it is necessary to first establish the definition of the balanced components of temperature Ty
and velocity potential Y. As mentioned in section 2, TBkis related to the streamfunction by Ty = A BY where
B stands for the linear balance (2.2). We follow Bouttier et al. (1997) and use linear regression to determine the
vertical operator A by finding that A which minimizes the variance of T'. The analytical form is used for the
linear balance operator itself. Similarly, the relationship between g and ¥ is defined as

xgh.o.m) = E(en) ¥ (A.o.m) . (3.6)
In that case, E is obtained by minimizing the variance of .
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Fig. 3: Implicit variances for winds ( cﬁ), temperature (c%) and logarithm of specific humidity (Glnz‘i)

implied from the statistics of the analysis variables. Also shown is the ratio vZ of the divergent
component of the kinetic energy of the wind error to the total kinetic energy.

4. RESULTS

The variances of the analysis variables ¥, %', T', In p, and In q implicitly define those of Winds, temperature
and the logarithm of specific humidity ({n q). These are shown in Fig. 3 which also shows the ratio vz((p,n) of
the divergent component of kinetic energy to the total kinetic energy of the wind error. The divergent component
includes the balanced component X and is active mostly in the tropics and near the surface. |

Fig. 4 shows the ratio of G% to the total temperature variance, G% The unbalanced component explains all the
temperature variance in the tropics since the geostrophic balance does not apply. Fig.5 shows a similar ratio of
C)zc' to 672( that is close to 1 in the tropics and at high altitudes where the divergent component is found to be
uncorrelated from . The ratio is shown in Fig.5 only from the ground up to 700 hPa. This picture is consistent

with the dynamics of Ekman dynamics which would be active near the surface but only in the extratropics.

Referring to Daley (1991), the characteristic length L is a measure of the local curvature of the horizontal
correlations and is defined as

2 _ 2 F(O:Tl 7n)

L'm) = VIFOnM) (4.1)
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Those derived from the correlations of W, %', T' and In ¢ are shown in Fig.6 as a function of height. A
noticeable feature is the increase in lengthscale at altitudes above the tropopause (~250 hPa). The oscillatory
behavior of the lengthscale of T' could be traced back to the temperature forecast of the model itself. We came-to
this conclusion by computing the lengthscale associated with the departure of the 48-hrs forecast with respect to
its monthly mean. A similar pattern to that shown in Fig.6 was obtained when using forecasts from this
experimental version of the GEM model but not when this computation was based on forecasts from the
operational spectral model operational.

The implied covariances are all derived from those of P'. Fig.7 shows the spectral coefficients 2 (n pT ) of
the vertical correlations of ¥ for n = 10 and 40 when M, = 0.242 . They have been normahzed S0 that
a (M pMp ) = 1. As noted by Rabier et al. (1998) the vertical correlations are sharper for shorter horizontal
scales By differentiating ‘¥’ to obtain winds, more emphasis is put on the smaller scales and the consequence is
that derived correlations for winds will be sharper than those of ¥. The 1mpact of the new covariance model on
the analysis increments is.discussed in the next section.

As mentioned at the beginning of section3, the variances can also be estimated from innovations values
obtained by comparing a 6-h forecast with radiosonde data. The variances estimated with this method are
presented in Fig.8 for winds (solid line in left panel) and temperature (solid line in right panel): these were
obtained by using all radiosonde data in the Northern Hemisphere (north‘ of 20°) for January 1997 and the
method used is described in Mitchell ef al. (1990). These compare well with the corresponding estimates from

o :Average north of 20°N o, :Average north of 20°N
10 10 o

o
Y
£
(3}

2 100} ] 100F 1
(423
w0
g
o

-0 O-P method —© O-P method

[>- O 48-24hr estimate [>- O 48-24hr estimate

1000 L—ege 1 1000 ' ' ]

0 5 10 0 2 4 6 8
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Fig. 8: Forecast error variances for winds (left panel) and temperature (right panel) estimated from
the lagged forecasts (dashed line) and by a comparison to radiosonde data (solid line) over the
Northern Hemisphere. The results of the lagged forecasts have been averaged over the

Northern Hemisphere to make the results comparable.
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the lagged forecasts averaged over the same area (shown as dashed lines in Fig.8) particularly for temperature.
Some discrepancies between the two methods can be noted. For winds near 400 hPa, the comparison to
radiosonde data suffers from a sampling error and shows a dependency on how the data are first binned and
averaged before a fit is done. On the other hand, the variances of temperature are slightly underestimated near the
surface by the lagged forecasts. These results give us some confidence in the background error variances
estimates shown on Fig.3. Those were then used without modifications.

5. IMPACT ON THE ANALYSIS: SINGLE OBSERVATION EXPERIMENTS

Referring to (2.3) and (2.4), the analysis increment AX = X~ X, is directly proportional to the covariances
when a single observation of wind, temperature or specific humidity is assimilated. These single observation
experiments are very useful to obtain a representation of the implicit covariances induced by the covariance
model described above.

In Fig. 9, the solid curve shows the vertical profile of the zonal wind analysis increment obtained in response to
a single observation of the zonal wind component at the level 1} = 0.242 (~ 250 hPa) at the latitude 45N (Sable
Island). By comparison, the corresponding wind increment is represented when the current operational statistics
are used (dashed curve). To facilitate the comparison, the two increments have been normalized to 1. The impact
of the new statistics is to produce a sharper wind increment. This change in the vertical structure can be directly
related to the non-separable correlation model used here. In the operational model, the vertical correlations used
for winds correspond exactly to those of the stream function. To compare, the vertical error correlation of
C\l,(np= 0.242m q) has also been plotted in Fig.9 (dotted curve) and agrees well with the increment of the
operational model. As discussed earlier, the fact that the new correlations are sharper at shorter horizontal scales
leads to different vertical correlations for winds than those defined for ¥. In the separable representation of

Gauthier et al. (1998), the vertical correlations are the same at all wavenumbers.
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Fig. 9: Analysis increments obtained in response to a single observation of u located at the
level 250 hPa for the new covariance model (solid line) and the covariance model used
operationally (dashed line). The vertical correlation Cy(np= O.242,nq) has also been

plotied. To permit the comparison, all three curves have been normalized.
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Fig. 10: Streamfunction and wind increments obtained in response to a single observation of
zonal wind located at 265 hPa in the Northern extratropics (45N, 60W).

Fig. 11: As in Fig. 10 but when the wind observation is located at the surface and at (60N, 30W). The balanced
component of the divergence is creating an inflow towards the center of the low pressure system (¥ negative) and
an outflow emerging from the center of the high pressure system (¥ positive).

The horizontal structure of the analysis increment is shown in Fig.10 and the circulation is approximately
geostrophic as expected. The cross-terms of the covariances (2.6) imply that this wind observation has an impact
on temperature and divergence (not shown).Similarly, Fig. 11 shows the analysis wind increments in response
to a single zonal wind observation located near the surface at 60N where the balanced component of the velocity
potential is the most active. The winds are converging towards the inside (outside) of the low (high) pressure

system as would be expected when surface friction is present.
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Fig. 12: Analysis increment for temperature (solid line) Fig. 13: As in Fig.13 but when the temperature
in response to a single observation of temperature observation is located at the equator.

located at 50N and 242 hPa. The vertical correlation of
T for this level has been superimposed. To permit
comparison, the analysis increment has been
normalized.

Temperature normalized increments are shown in Fig.12 and 13 in response to a single observation located at
50N and the equator respectively. These are shown as solid lines and compared to the vertical correlations of T".
The broadening of the temperature increment in the extratropics can be attributed to the balanced component of
temperature by the broader correlations used for ¥. The difference between the correlation shown on Fig.13 and

the normalized temperature increment is due to the vertical variation of the variances.

6. CONCLUSION

In this paper, the covariance model used in the new version of the 3D-var of AES has been described. It is
similar in many ways to that introduced by Bouttier et al. (1997) and uses a non-separable correlation model that
leads to sharper wind and temperature increments. Empirical relationships have been obtained to define the
balanced components of temperature and divergence. The form used to obtain the balanced temperature was
suggested by the analytical form of the hydrostatic relationship while the form used for the balanced component
of divergence is defined in physical space and is a function of latitude and height. The motivation for the latter
form came from the Ekman layer dynamics. This work is still ongoing and the next step is to conduct an
extensive set of experiments to assess the impact of these changes on the forecasts. The nature of these
experiments is similar to those described in Gauthier et al. (1998).

Because the background-error covariances play a key role in the analysis, the 3D-var system of AES has been
designed to handle more complex representations of the background-error covariances than was possible in our
previous statistical interpolation analysis. However, the removal of the assumption of stationarity of the

background-error statistics can only be achieved by casting the problem in a quadri-dimensional context. Using a
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simplified Kalman filter (Fisher and Courtier, 1995; Fisher, 1998) or an ensemble approach (Houtekamer and
Mitchell, 1998), approximations to the background error can be obtained to bring more realism to the covariance
model. Nothing precludes the introduction of such models in a 3D-var framework. The benefit would be to have
analysis increments with flow dependent baroclinic structures (Thépaut et al., 1995) capable of discriminating
whether the development of a meteorological system should be triggered or not. This would be an intermediate

level 4D data assimilation scheme that would improve upon the current formulation of the 3D-var.
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