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ABSTRACT
Everyone has observed the darkening, or decrease in

reflectance, of soil when it becomes wet. This distinct threshold -

between wet and dry surfaces suggests the concept that remote-
sensing of soil moisture is possible. Microwave remote sensing
offers most potential for truly quantitative soil moisture
measurements, and has the distinct advantage of being able to
penetrate cloud cover, some vegetation, and soil to quantify soil
moisture below the surface. Both passive and active microwave
remote sensing of soil moisture are based-on the large changes
in the soil dielectric constant with changing soil moisture. Water
has a dielectric constant of 80 at the lower microwave
frequencies that results from the alignment of the permanent
electric dipole of the water molecule. This is much higher than
the dielectric constant of 3 to 5 for dry soils. These properties
produce a large range of soil emissivities (from about 0.95 for
dry soils to 0.6 or less for wet soils) with changes of
corresponding magnitude in the soil's reflectivity. However, the
microwave emission of land surfaces is also dependent on
surface roughness, vegetative cover, soil heterogeneity,
incidence angle,
effects, and mixed scenes, which can obscure the soil moisture
signal. A 21-cm wavelength, L-band passive microwave sensor
is considered to be the best soil moisture sensor because it has
little contamination by vegetation and roughness, it has no man-
made contamination sources, and it penetrates the soil to a depth
of several centimeters. The drawbacks are that it requires a very
large- antenna to- get reasonable spatial resolution. Several
airborne L-band radiometers (PBMR and ESTAR) have been
used to successfully quantify soil moisture in a variety of field
experiments (FIFE, HAPEX, MACHYDRO, MONSOON90,
WASHITA 92-94, SGP97, etc.), and there are currently efforts
underway. to deploy a L-band radiometer is space :(i.e.
HydroStar). An overview of the theory and limitations of
microwave soil moisture remote sensing, a review of past
microwave remote sensing experiments, and a look towards the
future application of this promising technology are presented.

The quality of microwave soil moisture observations is
limited by roughness and vegetation induced noise, the depth of
observation is limited to the top few centimeters of soil, and the

surface  cover heterogeneity, :atmospheric -

MONSOON ‘90 SOIL MOISTURE DATA ASSIMILATION

- Surface soil moisture derived from the passive microwave
L-Band observations of NASA’s Push Broom Microwave
Radiometer (PBMR) [Schmugge et al., 1994] was assimilated
into the TOPLATS [Famiglietti and Wood, 1994] land surface .
model using several approaches.

Direct insertion, the simplest form of data assimilation,
assumes that observations are perfect and model calculations
contain no information. Model state variables are simply
replaced with observed data at the time of the observation in an
updating scheme, and no spatial propagation of the observations
are made. Updating was found to improve model predictions in
the areas where soil moisture was observed, but it created
undesirable discontinuities in model predictions, preserved local
observation error patterns, and was unable to extend information
from the observation region to other areas.

A second very simple assimilation technique, which we

term ‘statistical correction’, was developed to address some of

the weaknesses of updating. This technique involves adjusting
the mean and standard deviation of the entire model domain to
match the mean and standard deviation of the observation .
image. Itis only applicable to areas that have large numbers of
observations (such as remotely sensed data), and
computationally efficient. In the time domain it performs
similarly to updating, but is also able to spread observation
information horizontally and it does not preserve local
observation errors within the model fields.

Newtonian -nudging was .implemented to address
deficiencies on the above-described simple data assimilation
methods and to extend information vertically into the root and
transmission zones. Newtonian nudging adds an increment to
the model’s prognostic equation that nudges the model toward
an observation or set of observations in a predefined space-time
window usmg the equation:
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" ‘where « is the state variable being predicted by the model; &, is

frequency of observations will be limited to every few days. |

However, nearly-continuous spatial-temporal distribution of
near-surface soil moisture is central to the regulation of land-
atmosphere water, energy, and carbon interaction. ~ The
development of land hydrology parameterizations that
emphasize soil moisture, and innovative microwave remote
sensing for measuring ‘soil moisture, together promise a
mechanism' for the synthesis of continuous four-dimensional
fields of this vital hydrologic variable using data assimilation
methods. Schemes for the four-dimensional data assimilation
(4DDA) of remotely-sensed microwave -soil moisture, were
developed by Houser et al. [1998] that could ultimately be
applied at the regional scale. The assimilation of remotely-
sensed soil moisture leads to an improved characterization of
near-surface soil moisture space-time dynamics and attendant
processes, and contributes to an improved understanding of
surtace soil moisture scaling behavior and its impact on surface
flux parameterization. A brief 0verv1ew of this research is given
below.

the observation of «; F is the forcing on &, 'which depends on
previous values of @, other mode! fluxes X, and time #; G is the
nudging coefficient, which accounts for the observational
quality; and W is the four dimensional’ weighting function.
These weights are determined using a set of three simple,
predefined (horizontal, vertical, and temporal) functions which
assign a weight to an observation that decreases as-that
observation’s temporal and spatial distance increases from the
model point being corrected.

The Newtonian nudging methodology, was found to result
in spatial patterns that are very similar to those derived from the
statistical correction methodology, but it gave the added benefit
of vertical assimilation and more gradual temporal change.

Statistical Interpolation is implemented using the following

. equation:

) =f,,('-i)+; W)~/ (2)
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where K is the number of observation points, W is the weight
function, (/) is the analysis variable (soil moisture), r is the
three-dimensional spatial coordinates, /3(r;) is the analyzed value
of fat the analysis gridpoint r,/3(r,) is the background, or first

" guess value of fat r,, and fi,(r,) and fi(r,) are the observed and
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background values, respectively, and the observation station 7.
The weights are determined by least squares minimization of the
above equation. With the assumptions of no correlation between
background and observation error and isotropic, time invariant
error correlation, the weight can be found by solving K
equations for K unknowns, thus

)Y W lpulr=r)+€ ,polr=rdl=pylr;—ry) (3)

where g, is the observation error correlation matrix, and py is
the background error correlation matrix. Solving for K
(~35,000 per PBMR image) unknowns with K equations for
each grid in the model domain (~90,000) poses a excessive
computational demand. Therefore, the problem was scaled
down using a random selection of observations including the
closest observation which contains the most information, or by
computing ‘super observations’ which are simple averages of
observation groups. The random approach approximates the
fully-posed problem giving undesirable banding patterns outside
the observation area, and the super observation approach yields
smoother, more realistic spatial patterns.

Figure 1 shows the temporal surface soil moisture
improvements, and Figure 2 gives examples of typical spatial
patterns for each of the assimilation techniques described.

Important new contributions are made here, the most
significant being the assimilation of soil moisture data into a
spatially distributed hydrological model, enhancing prediction
ability.
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Figure 1: Temporal areal average surface soil moisture patterns
produced by various assimilation techniques.
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Figure 2: Typical spatial patterns (day of year=219) produced
by a) no assimilation, b) direct insertion, ¢) statistical
corrections, d) nudging, and €) random observation and f) super
observation statistical interpolation.





